只给测试集不给训练集,要怎么做自己的物体检测器?

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/dQCFKyQDXYm3F8rB0/article/details/100179110

640?wx_fmt=jpeg

9 月5 日,下周四,大家期待已久的由《动手学深度学习》作者,亚马逊首席科学家亲自带领的「深度学习实训营」就要在北京开营了。

 

今天,李沐已经把这次深度学习实训营白天的教学内容和代码上传到 Gituhub 和 D2L.ai 网站了,大家可以到网站上先行学习一波:

 

640?wx_fmt=png

 

http://1day-zh.d2l.ai.s3-website-us-west-2.amazonaws.com/#id9

 

重要的是,李沐已经公布当天晚上 Hackathon 的赛题——构建物体检测器。

这是一个不提供训练集的任务。需要你在现场采集、标注数据,来训练你的检测器。

大家以往参加这类竞赛,都是使用统一提供的训练和测试数据集,专注于提升模型精度。而这次 Hackathon 不会给大家提供训练集,只提供测试集,需要大家在现场根据背景、光照、角度物体细节等,自己采集、标注和处理这些数据。

 

通过 Hackathon,对没有实际工程经验,或者实际工程中特别需要这些工作的小伙伴们,大家将特别体验这些实际困难,给出解决方案,比如基于提供的测试集,对需求的了解,如何采集和标注数据?数据输入模型后,我们采集的数据和训练数据不一致,怎么处理?

 

这些你在书本、课程、学校学习或研究时都极少遇到和接触的问题,这次李沐亲自为大家解答,炼就耐打的技能。

 

如果之后,你需要了解或进入实际工程的问题,那这场 Hackathon 给你的都是切身的体会。

 

来一张采集现场的照片 

640?wx_fmt=png

 

你不用担心自己理论欠缺、经验不足,因为你更可以感受这一天课程胜过你学习几个月的魔力;也不用担心自己无所得,毕竟李沐现场指导的机会极其少。

 

而你只要带上你的电脑,能把照片导入到电脑的手机和照相机,再到现场来和小伙伴们组成 Team,就 ok 了。

 

Hackathon 之前,我们会先进行四部门的课程学习,这部分内容浓缩了李沐 2019 年在加州大学伯克利分校教授的《深度学习导论》课程,每部分 100 分钟。

 

640?wx_fmt=png

 

参与指南:

 

时间:2019 年 9 月 5 日

地点:北京长城饭店

注册:https://aiprocon.csdn.net/m/topic/ai_procon/ticket

提示:参与 Hackathon 一定要勾选【是否参加Hackthon】→是

或扫描下方二维码注册

640?wx_fmt=jpeg

文章创建于:
展开阅读全文

没有更多推荐了,返回首页