论文地址:https://arxiv.org/pdf/1904.12848v4.pdf
官方实现代码(tensorflow):https://github.com/google-research/uda
同样来自于谷歌的,偶然看到的,关于无监督数据增强方法
文章主要在三种任务上进行了相关实验:文本分类、图像分类、迁移学习
创新点:
- 监督学习中的数据增强方法在半监督学习中同样可以用来对无标签数据进行数据中增强
- 主要提出了一个名为Unsupervised Data Augmentation (UDA)无监督数据增强方法。
数据增强一直在监督学习中起着锦上添花的作用,因为到目前为止数据增强通常是用在数据集相对比较小的标记数据集上,以达到扩充数据集的多样性的作用,但是数据增强起到的作用依然是受限的。基于此,我们在一致性训练(即原始输入图片和添加噪声色图片,对模型的输出没有影响,输出是一致的)框架下,把这些监督学习中优秀的数据增强方法扩展到半监督学习任务当中。
当前半监督学习中,利用无标签数据去进一步平滑模型的方法,主要归纳为以下两步&