先插入一段代码,然后对这段代码进行解释。网上很多地方讲解了如何进行绕x轴,y轴旋转产生3D效果。但是没有任何人对矩阵的算法进行剖析。本文档对其算法进行解释。
void SkCamera3D::doUpdate() const {
SkUnit3D axis, zenith, cross;
fAxis.normalize(&axis);
{
SkScalar dot = SkUnit3D::Dot(*(const SkUnit3D*)(const void*)&fZenith, axis);
zenith.fX = fZenith.fX - SkUnitScalarMul(dot, axis.fX);
zenith.fY = fZenith.fY - SkUnitScalarMul(dot, axis.fY);
zenith.fZ = fZenith.fZ - SkUnitScalarMul(dot, axis.fZ);
(void)((SkPoint3D*)(void*)&zenith)->normalize(&zenith);
}
/*
[-z, 0, x] [cross.fX, cross.fY, cross.fZ]
[0, -z, y]* [zenith.fx, zenith.fY, zenith.fZ]
[0, 0, 1] [axis.fx, axis.fY, axis.fZ]
*/
SkUnit3D::Cross(axis, zenith, &cross);
{
SkMatrix* orien = &fOrientation;
SkScalar x = fObserver.fX;
SkScalar y = fObserver.fY;
SkScalar z = fObserver.fZ;
orien->set(SkMatrix::kMScaleX, SkUnitScalarMul(x, axis.fX) - SkUnitScalarMul(z, cross.fX));
orien->set(SkMatrix::kMSkewX, SkUnitScalarMul(x, axis.fY) - SkUnitScalarMul(z, cross.fY));
orien->set(SkMatrix::kMTransX, SkUnitScalarMul(x, axis.fZ) - SkUnitScalarMul(z, cross.fZ));
orien->set(SkMatrix::kMSkewY, SkUnitScalarMul(y, axis.fX) - SkUnitScalarMul(z, zenith.fX));
orien->set(SkMatrix::kMScaleY, SkUnitScalarMul(y, axis.fY) - SkUnitScalarMul(z, zenith.fY));
orien->set(SkMatrix::kMTransY, SkUnitScalarMul(y, axis.fZ) - SkUnitScalarMul(z, zenith.fZ));
orien->set(SkMatrix::kMPersp0, axis.fX);
orien->set(SkMatrix::kMPersp1, axis.fY);
orien->set(SkMatrix::kMPersp2, axis.fZ);
}
}
大家看了上面一段代码可能云里雾里。具体参照SkCamera.cpp。目录在android的 extern目录的libskia下。
这个矩阵算出来的是orien。orien顾名思义就是方位。但是上面的运算又是什么意思呢。很多线性代数不好的同学,或者线性代数很好的同学,都不知道。究其原因就是不能理论联系实际。这是中国人大学生的通病。
废话少说,解释一下。
[-z, 0, x] [cross.fX, cross.fY, cross.fZ ]
[0, -z, y]* [zenith.fx, zenith.fY, zenith.fZ]
[0, 0, 1] [ axis.fx, axis.fY, axis.fZ ]
[0, -z, y]* [zenith.fx, zenith.fY, zenith.fZ]
[0, 0, 1] [ axis.fx, axis.fY, axis.fZ ]
今天就到这里。明天继续。和明显x,y 表示的是偏移量。而-z,-z表示了放大缩小倍数。就相当于根据z的值,对原来的坐标系的沿着x,y方向进行放大z倍,然后平移到x,y。一般情况下,x=0,y=0,。因此,此函数就相当于放大了-z倍。