根轨迹法学习

根轨迹法用于分析闭环传递函数极点和零点在复平面上的变化,相角条件是决定根轨迹的关键,而幅值条件是必要的。通过开环传递函数和幅值方程,可以研究系统的稳定性。在MATLAB中,可以绘制根轨迹和奈奎斯特图来直观理解这些概念。例如,对于一个三重极点的放大器,当开环增益达到一定值时,闭环系统可能变得不稳定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

根轨迹法:随着低频环路增益\beta H_{0}的变化,追踪闭环传递函数的极点和零点在复平面上的变化趋势。

                                                            

其中相角条件是决定根轨迹的充要条件,s平面上一点若满足相角条件,则一定在根轨迹上,幅值条件为必要条件。

再通过幅值方程求出K值,K即为1+betaH中betaH的低频增益。

假设一个三重极点的放大器开环函数为:

                                                                 

                     接成闭环后:

                                                                 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值