量化交易四大天王

(1)JZ

大家老是混着用HF和JZ。其实HF只是个科技公司,用HF的技术真正做交易的是JZ资产管理公司。HF和JZ是左右手、是内部关联交易。

人红就是非多。没钱的时候,鬼都不来,有钱的时候,鬼都冒出来了。

虽然每个人都知道需要花钱消灾,能捐献尽量捐献,但是非不由你。

(2)MH

MH,QHM创建。QHM,复旦大学物理学士、美国宾夕法尼亚大学物理学硕士博士。曾在德意志银行、瑞士信贷投资银行做过投资经理。

MH也算是真量化交易,用的主要是机器学习技术。MH用的交易策略是对冲机制。

对冲机制呢,本来是个好机制,不过中国设计的时候有些漏洞,所以这十年来,玩股指期权、股指期货、融资融券、贴水、转融通,赚钱赚的嗨死了。所以这十年来,中国股市虽然一直不咋滴,但机构们挣钱挣High了,这就是制度的红利窗口期。现状,这个红利期已经吃了十年了,吃到头了,吃的太饱了,需要堵掉这个漏洞,再换一种机制再来十年红利窗口期。

量化交易本是先进方法,这没啥问题。

但中国韭菜们对对冲也不了解、对量化技术也不了解,反正自己亏了,反正自己不能玩对冲,反正听说是融资融券转融通搞的鬼,于是,一切都把粑粑抹到量化的头上。就连雪球这种本质是保险的金融衍生品都被按到量化交易头上。我在想,雪球这样的保险有个毛量化技术含量。但是三人成虎众口铄金,对与错、真与假已经没有意义了。

江湖传闻MH遇事,也把罪因盖到量化技术头上。我不太了解MH内幕,我只是从逻辑上猜测:明汯量化技术本身没问题,但是人的贪欲有问题,挣钱挣嗨了,杠杆放的太高了,正好遇到中国资产全部在出清阶段,于是,杠杆折了。

(3)JK

我不了解,江湖传闻也遇事了,听说也是杠杆折了。还有狗屎了连JK和JZ都分不清,张冠李戴,都把人气笑了。

只不过江湖传闻MH主要玩阿尔法、JK主要主要玩贝塔。这几年,中国指数型基金ETF玩法如火如荼,规模急剧扩大。

JK虽然高管大多出身清北的数学、物理、计算机、金融数学,但JK的量化技术在江湖上却口碑一般。

(4)LJ

LJ昨天被交易所处罚了。原因是LJ用程序自动化交易在龙年开市第一天,就高频卖出20多个亿。要知道GJD托市,一天也就是打入300亿。好家伙,你一家灵均就占了十分之一。

这就好比:你用手抢火车票,LJ用机器人抢火车票。所以你抢不到火车票。你说气人不气人。

GJD在托市开门红,LJ在卖,而且这么大的金额,这就太不给面子了。

我不了解LJ的量化技术水平咋样,但我要给大家普及个概念:程序自动化交易,和量化技术毛关系都没有。

但大家的火车票都被LJ用机器人抢光了,那就一定要把屎尿扣到量化技术的头上。

所以本来是应该打击程序化自动交易,没想到却打到了量化技术的头上。反正所有人都分不清啥是DMA、啥是程序化自动交易、啥是量化技术。

中国股民韭菜们和女人挺像:我不听我不听我不听。

8a3c09c22c04d9a63df152cffd43eebc.jpeg

资源下载链接为: https://pan.quark.cn/s/ddc62c5d4a5d Windows Mobile 是微软在 0200 年代至 2010 年代初推出的移动操作系统,曾广泛应用于智能手机和平板电脑。开发者可以借助各种库和框架为其开发功能丰富的应用,其中 “32feet.NET” 是一个开源的 .NET 库,专为 .NET Framework 和 .NET Compact Framework 提供蓝牙开发支持。它包含多个命名空间,例如 InTheHand.Devices.Bluetooth、InTheHand.Net.Personal 和 InTheHand.Phone.Bluetooth,用于实现蓝牙设备交互功能。 InTheHand.Devices.Bluetooth 命名空间用于执行基础蓝牙操作,比如扫描附近设备、建立连接以及发现蓝牙服务等。InTheHand.Net.Personal 提供了更高级的功能,例如创建个人区域网络(PAN)、文件传输和串行端口模拟,便于开发者开发跨设备的数据共享应用。而 InTheHand.Phone.Bluetooth 主要针对 Windows Phone 平台,支持蓝牙配对、消息收发和蓝牙耳机控制等功能,不过由于 Windows Mobile 已停止更新,该命名空间更多适用于旧设备或项目。 压缩包中的文件列表看似是维基页面的渲染文件,可能是关于 32feet.NET 的使用教程、API 参考或示例代码。文件名如 13632.html、563803.html 等可能是页面 ID,涵盖蓝牙设备搜索、连接和数据传输等不同主题。 使用 32feet.NET 进行蓝牙开发时,开发者需要注意以下几点:首先,确保开发环境已安装 .NET Framework 或 .NET Compact Framework,以及 32feet.NET
资源下载链接为: https://pan.quark.cn/s/d8a2bf0af1ac Mask R-CNN 是一种在实例分割任务中表现优异的深度学习模型,它融合了 Faster R-CNN 的目标检测功能和 CNN 的像素级分类能力,能够实现图像中每个目标的定位、识别与分割。本指南将指导你如何使用 Mask R-CNN 训练自定义数据集。 你需要准备包含图像(JPEG 或 PNG 格式)和标注文件(XML 或 JSON 格式)的数据集,标注文件需包含物体类别、坐标和掩模信息。数据集应按照 COCO 标准组织,分为训练集、验证集和可选的测试集。可以使用工具如 COCO API 或 labelme 将原始数据转换为 COCO 格式,并确保图像文件名与标注文件名一致且在同一目录下。通常按 8:2 或 9:1 的比例划分训练集和验证集。 从提供的压缩包中安装所需库。运行 pip install -r requirements.txt 安装依赖,包括 TensorFlow、Keras、Cython、COCO API 等。 修改 train_test.py 和 test_model.py 中的路径,使其指向你的数据集目录,确保 ROOT_DIR 指向数据集根目录,ANNOTATION_DIR 指向标注文件所在目录。在 config.py 中根据硬件资源和训练目标调整学习率、批大小、迭代次数等参数。 运行 train_test.py 开始训练。训练时会加载预训练权重并进行微调,期间会定期保存模型,便于评估和恢复。 使用 test_model.py 或 test.py 对模型进行验证和测试。这些脚本会加载保存的模型权重,将其应用于新图像并生成预测结果。 预测结果为二进制掩模,需进一步处理为可读图像。可借助 COCO API 或自定义脚本将掩模合并到原始图像上,生成可视化结果。 若模型性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值