矩阵A对任意的可逆矩阵p都有Ap=pA,证明A为数量矩阵

思路:由于p为任意可逆矩阵,范围较大不便于研究,我们可从最简单的可逆矩阵E(i,j),E(i(k)),E(i,j(k))入手(下面证明只需用前两种初等矩阵)
从初等矩阵入手,是因为任意可逆矩阵p都能化为一些初等矩阵之积
基础知识:
左乘一个初等矩阵相当于做行变换,右乘一个初等矩阵相当于做列变换

证明:
设B=Ap,C=pA
1<=i<j<=n ,当p为E(i,j)时
bii=aij,cii=aji,推出A为对称矩阵
Bij=aii,Cij=ajj
Bij=Cij
由i,j的任意性
可推a11=…=ann
B[(i,j+1),…,(i,n)]=(ai(j+1),…,ain)
C[(j,j+1),…,(j,n)]=(aj(j+1),…,ajn)
因为B[j+1,…,n]= C[j+1,…,n]
又因为i,j的任意性
可推
i<j,aij=akj,1<=kj,aij=aik,1<=k<i
因为A为对称矩阵
所以有aij=jk,1<i,k<j

1<=i<=n ,当p为E(i(k))时
为了便于计算,将k设为-1
B[(i,1),…,(i,i)]=-(ai1,…,aii)
C[(1,i),…,(i,i)]=(a1i,…,aii)
ai1=-a1i

ai(i-1)=- a(i-1)i
A为对称矩阵,ai1=a1i
由i的任意性
可推aij=0,i!=j

综上可得
p为前两种初等矩阵时,A为数量矩阵
将p扩大到任意可逆矩阵
满足条件的矩阵A一定是数量矩阵
但A不一定包含所有数量矩阵
于是将A=k·I代入原式
发现任意数量矩阵都满足原式
所以A包含任意数量矩阵
综上所述
A为任意数量矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值