矩阵A对任意的可逆矩阵p都有Ap=pA,证明A为数量矩阵

思路:由于p为任意可逆矩阵,范围较大不便于研究,我们可从最简单的可逆矩阵E(i,j),E(i(k)),E(i,j(k))入手(下面证明只需用前两种初等矩阵)
从初等矩阵入手,是因为任意可逆矩阵p都能化为一些初等矩阵之积
基础知识:
左乘一个初等矩阵相当于做行变换,右乘一个初等矩阵相当于做列变换

证明:
设B=Ap,C=pA
1<=i<j<=n ,当p为E(i,j)时
bii=aij,cii=aji,推出A为对称矩阵
Bij=aii,Cij=ajj
Bij=Cij
由i,j的任意性
可推a11=…=ann
B[(i,j+1),…,(i,n)]=(ai(j+1),…,ain)
C[(j,j+1),…,(j,n)]=(aj(j+1),…,ajn)
因为B[j+1,…,n]= C[j+1,…,n]
又因为i,j的任意性
可推
i<j,aij=akj,1<=kj,aij=aik,1<=k<i
因为A为对称矩阵
所以有aij=jk,1<i,k<j

1<=i<=n ,当p为E(i(k))时
为了便于计算,将k设为-1
B[(i,1),…,(i,i)]=-(ai1,…,aii)
C[(1,i),…,(i,i)]=(a1i,…,aii)
ai1=-a1i

ai(i-1)=- a(i-1)i
A为对称矩阵,ai1=a1i
由i的任意性
可推aij=0,i!=j

综上可得
p为前两种初等矩阵时,A为数量矩阵
将p扩大到任意可逆矩阵
满足条件的矩阵A一定是数量矩阵
但A不一定包含所有数量矩阵
于是将A=k·I代入原式
发现任意数量矩阵都满足原式
所以A包含任意数量矩阵
综上所述
A为任意数量矩阵

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 证明: 正向证明: 假设复方阵A是正规矩阵,则存在一个幺正矩阵U,使得 A = UDU*, 其中D是对角矩阵,并且U*U = UU* = I。 我们可以将D写成 D = P-1BP, 其中B是对角矩阵,P是一个可逆矩阵,因为D是对角矩阵。 将D代入A的式子中,得到 A = UP-1BPUP-1B*P-1U*。 令P-1U = Q,则Q*Q = I,因为U是幺正矩阵,所以Q也是幺正矩阵。 将Q代入上式中,得到 A = QBPB*Q*。 因此,存在一个可逆矩阵P,使得P-1AP和P-1A*P都是对角矩阵。 逆向证明: 假设存在一个可逆矩阵P,使得P-1AP和P-1A*P都是对角矩阵。 设P-1AP = D和P-1A*P = E,其中D和E都是对角矩阵。 因为P是可逆矩阵,所以P*P-1 = I,因此有 A = PDP-1 = P*DP-1*, A* = PE*P-1 = P*EP-1*。 因此, AA* = PDP-1PE*P-1* = PDEP-1*P-1 = PDP-1EP-1*P-1* = A*A。 因此,A是正规矩阵。 综上所述,复方阵A是正规矩阵当且仅当存在可逆矩阵P使P逆AP和P逆A*P都是对角矩阵。 ### 回答2: 首先,设复方阵A是正规矩阵。 正规矩阵定义为满足A*A* = A*A的矩阵。这意味着A*A* = A*A = AA*。 根据正规矩阵的定义,存在一个酉矩阵U(即U*U = I),使得U*A = AU*。考虑到酉矩阵的性质,U*A* = (U*A)* = (AU*)* = A*U,即U可以用来对A进行转置操作。 因此,我们可以构造P = A*U,其中U为满足U*A = AU*的酉矩阵。那么A = PU*和A* = U*P*。 我们将这两个等式代入到之前的P = A*U中,得到P = U*P*U。由于U为酉矩阵,它的逆等于其共轭转置,即U* = U^H。 将U*替换回等式,我们有P = U*P*U = U^HPU。 至此,我们证明了存在一个可逆矩阵P,使得P^-1AP和P^-1A*P都是对角矩阵。 反过来,设存在一个可逆矩阵P,使得P^-1AP和P^-1A*P都是对角矩阵。 对于P^-1AP,我们有(A^-1)^-1P^T = P^-1AP。因此,P^T = (A^-1)^-1P^-1AP。 对于P^-1A*P,我们有(AP^-1)^T = (P^-1A*P)^T。由于(A*P)^T = P^TA^T,我们可以得到P^TA^T = (P^-1A*P)^T。 因此,P^TA^T = (P^-1A*P)^T = (AP^-1)^T = (P^-1)^TA. 结合上述两个等式,我们有P^TA^T = P^TA。 由于P是可逆矩阵,我们可以对两边左乘P^-1,得到A^T = A。 因此,我们证明了复方阵A是正规矩阵。 综上所述,复方阵A是正规矩阵当且仅当存在一个可逆矩阵P,使得P^-1AP和P^-1A*P都是对角矩阵。 ### 回答3: 要证明复方阵A是正规矩阵当且仅当存在可逆矩阵P使得P^-1AP和P^-1A*P都是对角矩阵证明:假设A是正规矩阵。 首先证明必要性,即证明如果A是正规矩阵,则存在可逆矩阵P使得P^-1AP和P^-1A*P都是对角矩阵。 由于A是正规矩阵,根据正规矩阵的性质,A可以被施密特正交化的方法对角化,即存在正交矩阵Q和对角矩阵D,使得A=QDQ^-1。 由于Q是正交矩阵,所以Q^-1=Q^T(转置矩阵)。 令P=Q,那么P^-1=Q^-1=Q^T。 将P^-1AP和P^-1A*P代入,得到P^-1AP=Q^TAQ=Q^TQD=Q^-1QD=D是对角矩阵;P^-1A*P=Q^TAQ*Q=Q^TA=Q^TQD=Q^-1QD=D也是对角矩阵。 由此,证明了必要性。 然后证明充分性,即证明如果存在可逆矩阵P使得P^-1AP和P^-1A*P都是对角矩阵,则A是正规矩阵。 假设P^-1AP和P^-1A*P都是对角矩阵。 由于P^-1AP是对角矩阵,那么A=PPP^-1A=PD(P^-1A)。 由于P^-1A*P是对角矩阵,那么A*(P*P^-1)=A*P*P^-1=(AP)*P^-1=(PD)*P^-1=P*DP^-1=P*DP^-1。 将A和A*代入式子中,得到A*(P*P^-1)=(AP)*P^-1。 两边同时左乘P,得到P*A*(P*P^-1)=P*(AP)*P^-1。 由于P是可逆矩阵,所以P*P^-1=I(单位矩阵)。 因此,P*A*P=P*(AP)*P^-1=APP^-1=A。 由此,证明了充分性。 综上所述,复方阵A是正规矩阵当且仅当存在可逆矩阵P使得P^-1AP和P^-1A*P都是对角矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值