6.4 卷积神经网络 池化

本文详细介绍了池化函数在深度学习中的作用,包括最大池化和平均池化的概念和效果。最大池化通过选取区域内的最大值,产生马赛克效果,适合特征定位;平均池化则提供更平滑的输出,可能导致图像模糊。此外,还讨论了填充和步幅对最大池化的影响,展示了如何调整这些参数来改变输出尺寸和图像细节。
摘要由CSDN通过智能技术生成

一、池化函数定义

二、原始图像

三、最大池化 max

解释

最大池化是以某一块中最大像素值代表这一块,于是会呈现类似马赛克的效果

效果

四、平均池化 avg

解释

平均池化相比最大池化更加地平滑,会呈现模糊的效果

演示

五、最大池化(内置池化使用) 填充 & 步幅

解释

因为填充了步幅,图片尺寸相应的缩小了,仔细看也能看到图像的每一小部分的锯齿现象(max池化效果)

演示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值