Vision Mamba:将Mamba应用于计算机视觉任务的新模型

论文介绍了华中科技大学等机构研发的VisionMamba,一种基于Mamba架构的视觉模型,通过双向状态空间模型提高处理长序列和高分辨率图像的效率,对比Transformer模型在性能和内存消耗上有显著优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Mamba是LLM的一种新架构,与Transformers等传统模型相比,它能够更有效地处理长序列。就像VIT一样现在已经有人将他应用到了计算机视觉领域,让我们来看看最近的这篇论文“Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Models,”

对于VIT来说,Transformers虽然功能强大,但通常需要大量的计算资源,特别是对于高分辨率图像。Vision Mamba旨在通过提供更有效的替代方案来解决这个问题。

Vision Mamba vs Transformers

这篇论文主要由华中科技大学、地平线机器人、北京人工智能研究院的研究人员贡献,深入研究了Mamba 是如何处理视觉任务的。Mamba的效率来自于它的双向状态空间模型,与传统的Transformer模型相比,理论上可以更快地处理图像数据。

处理图像本质上比处理文本要复杂得多。因为图像不仅仅是像素的序列;它们还包含复杂的模式,变化的空间关系,以及理解整体环境的需要。这种复杂性使得视觉数据的有效处理成为一项具有挑战性的任务,特别是在规模和高分辨率下。

Vision Mamba (Vim)

Mamba块是Vim的一个关键特性,通过使用位置嵌入标记图像序列,并使用双向状态空间模型压缩视觉表示,Vision Mamba可以有效地捕获图像的全局上下文。这种方法解决了可视数据固有的位置敏感性,这是传统Transformer模型经常遇到的一个关键问题,特别是在更高分辨率下。

Vision Mamba Encoder

Vim模型首先将输入图像划分为小块,然后将小块投影到令牌中。这些令牌随后被输入到Vim编码器中。对于像ImageNet分类这样的任务,在令牌标记序列中添加了一个额外的可学习分类标记(这个标记是重BERT开始一致这样使用的)。与用于文本序列建模的Mamba模型不同,Vim编码器在正向和反向两个方向上处理标记序列。

还记得双向LSTM么,Vim的一个突出特点是它的双向处理能力。与许多以单向方式处理数据的模型不同,Vim的编码器以向前和向后的方向处理标记。双向模型允许对图像上下文进行更丰富的理解,这是准确图像分类和分割的关键因素。

基准测试结果及表现

在ImageNet分类、COCO对象检测和ADE20K语义分割方面,Vim不仅表现出更高的性能,而且还表现出更高的效率。例如,在处理高分辨率图像(1248 × 1248)时,Vim比DEIT快2.8倍,同时节省了86%的GPU内存。考虑到在高分辨率图像处理中经常遇到的内存限制,这是一个非常大的进步。

与VIT的比较分析

这篇论文并没有仅仅停留在比较VIM和DEIT。它还包括与VIT的比较。虽然VIT确实是一个强大的模型,但VIM在效率和性能上仍然超过它,特别是随着分辨率的增加。这种比较为评估VIM的能力提供了更广泛的背景。

高分辨率图像处理

论文还强调了高分辨率图像处理在各个领域的重要性。例如在卫星图像中,高分辨率对于详细分析和准确结论至关重要。同样在PCB制造等工业环境中,在高分辨率图像中检测微小故障的能力对于质量控制至关重要。VIM在处理此类任务方面的也非常有可比性。

总结

论文介绍了一种将Mamba用于视觉任务的方法,该方法利用双向状态空间模型(ssm)进行全局视觉上下文建模和位置嵌入。这种方法标志着传统的注意力机制可能会退出历史的舞台,因为VIM展示了一种有效的方法来掌握视觉数据的位置上下文,而不需要基于transformer的注意机制。

VIM以其次二次的时间计算和线性内存复杂性与Transformer模型中典型的二次增长形成鲜明对比。这一点使得VIM特别适合处理高分辨率图像。

通过对ImageNet分类等基准的全面测试,验证了VIM的性能和效率,证明可以将其应用在计算机视觉领域强大模型的地位。

论文地址:

https://avoid.overfit.cn/post/7171ae82866d4b07853266073485e8cb

作者:azhar

### Vision Mamba: 双向状态空间模型用于高效视觉表征学习 Vision Mamba 是一种创性的框架,旨在通过引入双向状态空间模型来实现高效的视觉表征学习。该方法利用了时间序列数据中的前后依赖关系,从而提高了特征提取的效果。 #### 架构概述 在传统的时间序列分析中,单向模型仅考虑过去的信息。然而,在某些情况下,未来的信息同样重要。为此,Vision Mamba 提出了一个颖的架构,它不仅能够从前向后处理输入序列,还可以从后向前处理同一序列[^1]。这种设计使得网络可以捕捉到更丰富的上下文信息,进而提升整体性能。 ```python class BidirectionalStateSpaceModel(nn.Module): def __init__(self, input_dim, hidden_dim): super(BidirectionalStateSpaceModel, self).__init__() self.forward_model = nn.LSTM(input_dim, hidden_dim) self.backward_model = nn.LSTM(input_dim, hidden_dim) def forward(self, x): # 前向传播 output_forward, _ = self.forward_model(x) # 后向传播 (反转输入顺序) reversed_x = torch.flip(x, [0]) output_backward, _ = self.backward_model(reversed_x) combined_output = torch.cat((output_forward, output_backward), dim=-1) return combined_output ``` 此代码片段展示了如何构建一个简单的双向 LSTM 模型作为状态空间的一部分。实际应用中可能还需要加入更多组件以适应具体任务需求[^2]。 #### 训练过程 为了训练这样的复杂结构,研究者们采用了一种特殊的损失函数组合策略。除了常见的重构误差外,还加入了正则化项以及对比损失,用来鼓励生成更具区分度且稳定的表示形式[^3]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值