定义:在绝对0K的条件下,自由电子所处的最高能级,常用Ef表示。它是一个理想化的绝对条件。
先来解释一下能级能带的概念吧。由量子力学最基本的假设可知,能级不具备连续性。(以H原子为例)
当体系中有很多原子时,原子间存在相互作用,导致能级移动,原本一条的能级扩展成了一组差别很小的结构,我们称之为能带/允带。
由于能带是从能级扩展而出的概念,不同能级的能带间存在没有能级的间隔,这个间隔就是禁带,电子无法取到禁带中的能量。
基态原子电子填充是从最低能级开始依次往高能级向上填充的过程。对于半导体,电子刚好填充到某一个能带满了,下一个能带全空,这些被填满的能带称为满带,满带中能量最高的一条称为价带。我们可以认为价带中的电子是不导电的。
对于半导体,能量最高的一个价带到能量更高的下一个能带之间有一个禁带,但是这个禁带的宽度不是很大,所以有一些电子有机会跃迁到下一个能带。由于这个能带几乎是空的,所以电子跃迁到这个能级之后就可以自由奔跑,这个能带就是导带。
ps:对于绝缘体,这个禁带宽度太大,基本不可能有电子跃迁过去;对于金属,则不存在禁带,导带与价带直接重合了,不需要跃迁就可以导电。
半导体中的载流子有带负电的自由电荷以及带正电的自由空穴。上述粒子均为自由电子。
引入费米能级的概念是为了方便描述电子在能带中的分布。
半导体在绝对0度的条件下(理想条件),费米能级以下的所有能级都被电子填满,费米能级以上的所有能级都是空的。当温度高于绝对0度时,可以通过费米能级和温度来计算电子的费米-狄拉克分布。
,n为粒子占据概率,ε为能量,μ为化学势即费米能级,T为温度。
(费米-狄拉克分布)
根据公式,我们发现,当ε=μ时,n=1/2,即无论T是否为绝对零度,费米能级均满足n=1/2的性质,所以我们可以由粒子出现概率是否为50%判断粒子是否在费米能级上。
而在半导体中,由于禁带的存在,绝对零度下电子填充的最高能级其实是价带顶,而本征半导体的费米面认为是在禁带中央,这是因为采用了电子出现概率为50%的定义,其费米面刚好就在中央。
纯净的半导体(本征半导体)的导电能力很差,为了使更多的载流子跃迁到导带,需要高温,或对半导体进行掺杂,通过掺杂来引入新的能级。