什么是费米能级?

费米能级

1. 介绍

费米能级(Fermi level)表示温度为绝对零度时固体能带中充满电子的最高能级。常用EF表示。对于固体试样,由于真空能级与表面情况有关,容易改变,所以用该能级作为参考能级。电子结合能就是指电子所在能级与费米能级的能量差。

2. 定义

假想把所有的费米子从这些量子态上移开,然后再把这些费米子按照一定的规则(例如泡利不相容原理等)填充在各个可供占据的量子态上,并且这种填充过程中每个费米子都占据最低的可供占据的量子态。最后一个费米子占据着的量子态即可粗略理解为费米能级。

虽然严格来说,费米能级等于费米子系统在趋于绝对零度时的化学势。但是在半导体物理和电子学领域中,费米能级则经常被当做电子或空穴化学势的代名词。

3. 费米子

费米子是自旋为半整数的粒子。比如电子、质子、中子等以及其反粒子。在一组由全同粒子组成的体系中,如果在体系的一个量子态(即由一套量子数所确定的微观状态)上只容许容纳一个粒子,这种粒子称为费米子。或者说自旋为半整数(1/2,3/2…)的粒子统称为费米子,符合费米-狄拉克统计。费米子满足泡利不相容原理,即不能两个以上的费米子出现在相同的量子态中。轻子,核子和超子的自旋都是1/2,因而都是费米子。自旋为3/2,5/2,7/2等的共振粒子也是费米子。中子、质子都是由三种夸克组成,自旋为1/2。因为中子、质子都是费米子,故奇数个核子组成的原子核自旋是半整数

4. 物理意义

对于金属,绝对零度下,电子占据的最高能级就是费米能级。费米能级的物理意义是,该能级上的一个状态被电子占据的概率是1/2。在半导体物理中,费米能级是个很重要的物理参数,只要知道了它的数值,在一定温度下,电子在各量子态上的统计分布就完全确定了。

它和温度、半导体材料的导电类型、杂质的含量以及能量零点的选取有关。n型半导体费米能级靠近导带边,过高掺杂会进入导带。p型半导体费米能级靠近价带边,过高掺杂会进入价带。将半导体中大量电子的集体看成一个热力学系统,可以证明处于热平衡状态下的电子系统有统一的费米能级。

5. 作用

作为费米-狄拉克分布函数中一个重要参量的费米能级EF,具有决定整个系统能量以及载流子分布的重要作用。

1. 在半导体中,由于费米能级(化学势)不是真正的能级,即不一定是允许的单电子能级(即不一定是公有化状态的能量),所以它可以像束缚态的能级一样,可以处于能带的任何位置,当然也可以处于禁带之中

对于绝缘体和半导体,费米能级则处于禁带中间。特别是本征半导体和绝缘体,因为它们的价带是填满了价电子(占据概率为100%)、导带是完全空着的(占据概率为0%),则它们的费米能级正好位于禁带中央(占据概率为50%)。即使温度升高时,本征激发而产生出了电子-空穴对,但由于导带中增加的电子数等于价带中减少的电子数,则禁带中央的能级仍然是占据概率为50%,所以本征半导体的费米能级的位置不随温度而变化,始终位于禁带中央

2. 费米能级实际上起到了衡量能级被电子占据的概率大小的一个标准的作用。

当E<EF时,f(E) >1/2;

当E>EF时,f(E) <1/2;

当E=EF时,f(E)=1/2。

譬如,当(E–EF) >5kT时,f(E) < 0.007,即比EF高5kT的能级被电子占据的概率只有0.7%。因此,EF的高低(位置)就反映了能带中的某个能级是否被电子所占据的情况。费米能级上电子占据的概率刚好为50%。

在温度不很高时,EF以上的能级基本上是空着的(例如,导带就是如此,其中的自由电子很少),EF以下的能级基本上是被电子填满了的(例如,价带就填满了价电子,其中的自由空穴很少);在EF以上、并越靠近EF(即E-EF越小)的能级,被电子所占据的概率就越大。对于n型半导体,因为导带中有较多的电子(多数载流子),则费米能级EF必将靠近导带底(EC);同时,掺入施主杂质的浓度越高,费米能级就越靠近导带底。

3. 分布函数f(E)是指电子占据能带(导带)中某个能级的概率(电子的能量越往上越高)。如果是讨论空穴载流子的话(空穴的能量越往下越高),那么就应当是相应于价带中某个能级所空出(即没有被电子占据)的概率。

对于p型半导体,因为价带中有较多的自由空穴(多数载流子),则费米能级EF在价带顶(EV)之上、并必将靠近EV;这时,价带中越是靠近EF的的能级,就被空穴占据的概率越大;同时,掺入受主的杂质浓度越高,费米能级就越靠近价带顶。

总之,凡是EF靠近导带底的半导体必将是电子导电为主的n型半导体凡是EF靠近价带顶的半导体必将是空穴导电为主的p型半导体。当然,如果EF处于禁带中央,即两种载流子分别占据导带能级和价带能级的概率相等,则两种载流子的数量也就差不多相等,那么必然是本征半导体,这时的费米能级特称为本征费米能级(用EFi表示,与禁带中央线Ei一致)。

4. 由于费米-狄拉克分布函数是载流子体系处于热平衡状态下的一种统计分布规律。因此,也只有在(热)平衡情况下才可采用此分布函数,并且也只有在这时费米能级才有意义。实际上,费米能级本来就是热平衡电子系统的一个热力学函数——化学势。由于在热平衡状态下整个系统具有统一的化学势,因此整个电子系统,即使是复杂的混合体系,在热平衡时也必将具有统一的一个费米能级。


本文章是博主花费大量的时间精力进行梳理和总结而成,希望能帮助更多的小伙伴~  🙏🙏🙏

后续内容将持续更新,敬请期待(*^▽^*)

欢迎大家评论,点赞,收藏→→→

以下是使用MATLAB绘制费米能级-本征费米能级像的代码和步骤: 1.首先,我们需要定义一些变量,例如温度,费米能级,本征费米能级等。这些变量的值可以从引用中获取。 2.接下来,我们需要使用MATLAB的plot函数绘制费米能级和本征费米能级的曲线。我们可以使用不同的颜色和线型来区分它们。 3.最后,我们需要添加一些标签和标题,以使像更加清晰和易于理解。 ```matlab % 定义变量 T = 300; % 温度 k = 8.617e-5; % 玻尔兹曼常数 Nc = 2.8e19; % 晶格中的电子数 Nv = 1.04e19; % 晶格中的空穴数 Eg = 1.12; % 硅的带隙宽度 ni = sqrt(Nc * Nv) * exp(-Eg / (2 * k * T)); % 本征载流子密度 Ef = -0.05; % 费米能级 Ec = Ef + Eg / 2; % 导带底部 Ev = Ef - Eg / 2; % 价带顶部 % 绘制费米能级和本征费米能级的曲线 E = linspace(-0.5, 0.5, 1000); % 能量范围 f = 1 ./ (1 + exp((E - Ef) / (k * T))); % 费米分布函数 f0 = 1 ./ (1 + exp((E - Ec) / (k * T))); % 导带底部的费米分布函数 f1 = 1 ./ (1 + exp((E - Ev) / (k * T))); % 价带顶部的费米分布函数 plot(E, f, 'r-', 'LineWidth', 2); % 绘制费米能级曲线 hold on; plot(E, f0, 'b--', 'LineWidth', 2); % 绘制本征费米能级曲线 plot(E, f1, 'b--', 'LineWidth', 2); ylim([0 1.2]); % 设置y轴范围 legend('费米能级', '本征费米能级'); % 添加例 xlabel('能量 (eV)'); % 添加x轴标签 ylabel('费米分布函数'); % 添加y轴标签 title('费米能级-本征费米能级像'); % 添加标题 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

零零刷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值