AI基础设施内涵与特性
以深度落地赋能为导向,AI供给侧持续推进技术要素全面融合、技术能力自主可控、技术服务普惠低成本,AI供给“基建 化”势在必行,AI基础设施正成为AI的关键供给形态。算法、算力、数据是AI技术应用的三大核心支撑要素,而大模型时 代对三要素也提出了更高的要求。优秀的应用能力需要更大参数规模的模型、足够多的训练数据以及强大的计算能力作为 支撑,而这样的技术能力只有少数企业具备。如果能够把这样的能力以基础设施的形式普惠化地开放共享给社会,即实现 AI基建化,就能够大大降低AI应用的门槛,让更多的主体能够拥抱AI。AI供给的基建化正顺应产业智能化转型发展的需 求,也是我国发展和布局AI的重要举措之一,将为我国人工智能产业发展壮大、数字经济蓬勃发展提供强大的牵引力。
AI基础设施以“数据、算法、算力”为资源要素,以AI算力设施、AI数据平台、AI算法平台、AI开放创新平台等为主要 载体,可提供包含模型训练等在内的专业前沿的AI应用及服务,支撑AI产业发展、赋能行业应用,为培育智能经济、构筑 智能社会提供基础承载。AI基础设施须满足作为基础设施的技术能力先进自主性。为适应AI技术迭代速度快、行业应用需 求不断涌现的特点,AI基础设施必须提供灵活多样、动态迭代、性能领先、具备前瞻性的技术能力,保障AI基础设施始终 满足我国智能社会发展需要。此外,AI基础设施须掌控底层核心技术创新能力,从源头实现自主可控,这也是AI基础设施 平稳运行的关键前提。
AI基础设施将着力推进AI落地赋能,并释放更深更广的价值。从人工智能产业发展看,AI基础设施将推动人工智能与 5G、云计算、大数据、物联网等领域相互耦合,加速人工智能与实体经济深度融合,形成新一代信息基础设施赋能产业的 核心能力。从培育智能经济