股票——真实波动幅度均值

ATR(Average True Range,真实波动幅度均值)是一个用来衡量股价波动性的技术指标。

真实波动幅度均值(ATR)是交易系统设计者的一个不可缺少的工具,它称得上是技术指标中的一匹真正的黑马。每一位系统交易者都应当熟悉ATR及其具有的许多有用功能。其众多应用包括:参数设置,入市,止损,获利等,甚至是资金管理中的一个非常有价值的辅助工具。

概念介绍

真实波动幅度均值(ATR)是由韦尔斯·王尔德所发展出来的 技术分析指标,以 N 天的指数移动平均数平均後的交易波动幅度。
一天的交易幅度只是单纯地  最大值 - 最小值。而真实波动幅度则包含昨天的 收盘价,若其在今天的幅度之外:
真实波动幅度 = max(最大值,昨日收盘价) − min(最小值,昨日收盘价) 真实波动幅度均值便是「真实波动幅度」的 N 日 指数移动平均数。
波动幅度的概念表示可以显示出 交易者的期望和热情。大幅的或增加中的波动幅度表示交易者在当天可能准备持续买进或卖出 股票。波动幅度的减少则表示交易者对 股市没有太大的兴趣。

计算方法

波动幅度:单根 K线图最高点和最低点间的距离。
真实波动幅度:是以下三个波动幅度的最大值
1. 当天最高点和最低点间的距离
2. 前一天 收盘价和当天最高价间的距离
3. 前天收盘价和当天最低价间的距离
当日K线图出现 缺口时,真实波动幅度和单根K线的波动幅度是不同的。
真实波动幅度均值就是真实波动幅度的 平均值
为了让ATR反映短期波动性,可以使用短期ATR(2-10根K线图);为了让ATR反映“长期”波动性,可以使用20至50根K线或更多。[1]  

研判法则

均幅指标无论是从下向上穿越 移动平均线,还是从上向下穿越移动平均线时,都是一种研判信号。它表示股价运行趋势有可能发生逆转,具体如何转变需结合趋势类指标进行综合研判。

特征及应用

ATR是一个评价 市场价格运动的通用 指标,而且是一个真正的自适应指标。下面这个例子能帮助解释这些特征的重要性。如果我们计算一下 玉米在两天内的平均价格波动幅度,比如说是500美元;日元合约的平均价格波动幅度可能是2,000美元或更多。如果我们要建立一个 交易系统分别为玉米或日元设置合适的 止损水平,那么我们会看到这两者的止损水平是不同的,因为两者的波动性不同。我们可能在玉米上设定750美元的止损水平,而在日元合约上是3,000美元。如果我们要建立一个能同时适用于这两个 市场的交易系统,我们很难在这两个市场上让用美元数量表示的止损水平相等。750美元的止损水平对玉米来说是合适的,但对日元来说可能太小了;3,000 美元的止损水平对日元来说是合适的,但对玉米来说太大了。

使用注意

由于惊恐购买所驱使的价格的剧烈下跌,这一 指标在市场底部通常可以达到一个较高的价值。这 一指标对于长期持续边幅移动的时段是非常典型的,这一情况通常发生在市场的顶部,或者是在 价格巩固期间。平均波幅通道技术指标依据同样的原则,可以被解释成为其他一些易变指数。根 据这个指标来进行预测的原则可以表达为:该指标价值越高, 趋势改变的可能性就越高;该指标 的价值越低,趋势的移动性就越弱。
ATR均幅指标无论是从下向上穿越移动平均线,还是从上向下穿越移动平均线时,都是一种研判 信号。它表示股价运行趋势有可能发生逆转,具体如何转变需结合趋势类指标进行综合研判。在 这里提醒大家一点ATR均幅指标一般不单独使用,应结合其他指标综合研判。

转载于:https://www.cnblogs.com/data-ccz/p/6130739.html

### 中值滤波与均值滤波的工作原理 #### 均值滤波工作原理 均值滤波是一种线性滤波方法,通过计算窗口内所有像素的平均值来替代中心像素的值。这种方法可以有效地减少随机噪声的影响,但对于尖锐边缘和平滑区域的效果不佳。当存在较大的脉冲噪声时,均值滤波可能会模糊掉重要的图像特征[^2]。 ```python import numpy as np from scipy.ndimage import uniform_filter def mean_filter(image, size=3): """ 对输入图像应用均值滤波 参数: image (ndarray): 输入图像数组 size (int): 滤波器大小,默认为3x3 返回: ndarray: 经过均值滤波后的图像 """ filtered_image = uniform_filter(image, size=size) return filtered_image ``` #### 中值滤波工作原理 中值滤波属于非线性滤波技术,它不是简单地取平均值而是选取排序后的中间值作为新的像素值。这种特性使得中值滤波能够很好地去除椒盐噪声而不破坏图像中的重要结构信息,在保持边界清晰度方面表现尤为出色[^3]。 ```python from scipy.ndimage import median_filter def median_filtering(image, size=3): """ 应用中值滤波于给定图像 参数: image (ndarray): 待处理的灰度图像矩阵 size (int or tuple of ints): 邻域尺寸,默认为3x3 输出: 进行了中值滤波操作之后的新图像 """ result = median_filter(image, size=size) return result ``` ### 实现过程对比 - **均值滤波**:通过对指定区域内所有元素求算术平均数的方式来进行平滑化处理;适用于均匀分布的小幅度波动场景下的降噪需求。 - **中值滤波**:采用顺序统计的方法找出局部范围内的最典型代表——即处于正中央位置的那个数值;特别适合对付那些具有明显异常特性的干扰因素,比如由传感器故障引起的离群点或称为“野值”。 综上所述,针对含有大量突发型误差的数据集而言,选用中值滤波往往可以获得更优的结果,因为这类算法能够在很大程度上去除这些不规则成分的同时较好地维持原始信号的主要形态特点[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值