前言
Hi,各位读者,好久不见!现在我已经从北大博士毕业,成为一名小青椒啦!工作还是需要宣传的。今天想分享我在水下目标检测的工作:《A gated cross-domain collaborative network for underwater object detection》,发表在中科院一区期刊《Pattern Recognition》,代码已经开源:Github
欢迎大家引用我的工作,也欢迎学术合作👏
动机
水下目标检测(Underwater Object Detection,UOD)与通用目标检测(Generic Object Detection,GOD)之间最大的区别在于不同的检测环境。水下图像不可避免地受到能见度差、光线折射、吸收和散射等影响。尽管有研究通过水下图像增强(Underwater Image Enhancement, UIE)技术改善图像质量以提高目标检测性能,但也有研究显示,仅依赖图像增强可能不足以提升检测效果,有时甚至会导致性能的显著下降。这主要是因为图像增强技术虽然能在视觉上改善图像,但机器对场景的理解与人眼存在本质差异,仅通过调整颜色、亮度和对比度并不能充分提供目标检测所需的信息。而且,图像增强的过程不可避免地移除或改变图像中的关键细节,引入噪声或伪影。针对这一问题,有研究者探索了结合水下视觉增强和目标检测的策略,这些策略主要分为预处理方式和多任务学习方式。如图(a)所示,在预处理方式中,