NVIDIA 不同显卡对应的GPU计算能力

  • Fermi (CUDA 3.2 until CUDA 8) (deprecated from CUDA 9):
    • SM20 or SM_20, compute_30 – Older cards such as GeForce 400, 500, 600, GT-630
  • Kepler (CUDA 5 and later):
    • SM30 or SM_30, compute_30 – Kepler architecture (generic – Tesla K40/K80, GeForce 700, GT-730)
      Adds support for unified memory programming
    • SM35 or SM_35, compute_35 – More specific Tesla K40
      Adds support for dynamic parallelism. Shows no real benefit over SM30 in my experience.
    • SM37 or SM_37, compute_37 – More specific Tesla K80
      Adds a few more registers. Shows no real benefit over SM30 in my experience
  • Maxwell (CUDA 6 and later):
    • SM50 or SM_50, compute_50 – Tesla/Quadro M series
    • SM52 or SM_52, compute_52 – Quadro M6000 , GeForce 900, GTX-970, GTX-980, GTX Titan X
    • SM53 or SM_53, compute_53 – Tegra (Jetson) TX1 / Tegra X1
  • Pascal (CUDA 8 and later)
    • SM60 or SM_60, compute_60 – GP100/Tesla P100 – DGX-1 (Generic Pascal)
    • SM61 or SM_61, compute_61 – GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030, Titan Xp, Tesla P40, Tesla P4, Discrete GPU on the NVIDIA Drive PX2
    • SM62 or SM_62, compute_62 – Integrated GPU on the NVIDIA Drive PX2, Tegra (Jetson) TX2
  • Volta (CUDA 9 and later)
    • SM70 or SM_70, compute_70 – Tesla V100, GTX 1180 (GV104)
    • SM71 or SM_71, compute_71 – probably not implemented
    • SM72 or SM_72, compute_72 – currently unknown
  • Turing (CUDA 10 and later)
    • SM75 or SM_75, compute_75 – RTX 2080, Titan RTX, Quadro R8000

扫码关注

实用AI客栈

获取最新AI资讯与实战案例

小编微信号 : langu86

参考网址:http://arnon.dk/matching-sm-architectures-arch-and-gencode-for-various-nvidia-cards/

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

upDiff

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值