密勒补偿

密勒补偿导致极点分裂是一个老套路了。但今天发现了一种更加科学的理解方式。

1、二阶系统

基本上所有的运放最后都要去简化到二阶。因为第一数学上一个因式可以拆成一阶和二阶。第二高阶系统是不好直观设计的。

注:直观这个词对应的原文是insight,本意是从电路本质出发,提供设计思路(直觉)的理解方式,而非数学计算。但并不代表电路是看出来的。

二阶系统的一般表达式:\large \frac{1}{1+bs+as^2}=\frac{1}{1+2\zeta( \frac{s}{\omega_n }) +{(\frac{s}{\omega_n})}^2}

这两种形式都非常重要。第一种是直接计算得到的传函,第二种是化成二阶阻尼系统的标准形式。

2、二阶阻尼系统

二阶系统的根轨迹如下:

由于系统的两个根是\large {[-\zeta\pm \sqrt{(\zeta^2-1)} ]}\cdot \omega_n。所以根轨迹分成两支。

when \large \zeta is less than one and normalized the roots by \large \omega_n , we will get to complex poles namely \large -\zeta\pm j\sqrt{1-\zeta^2}. 很明显轨迹对应单位圆。 考虑到品质因数Q等于\large \frac{1}{2\zeta},绿线标出了品质因数。可以看到阻尼系数\large \zeta越小,品质因数越高。对应系统能量损耗越小,系统的settle越久。这是容易注意到的部分。

接下来是不容易注意到的部分,就是\large \zeta比1大,根变成了两个实根:\large p_1={-\zeta+ \sqrt{(\zeta^2-1)}\large p_2={-\zeta- \sqrt{(\zeta^2-1)}。这两个根是怎么分布的呢?P1比P2小,同时注意到两根的中心点落在\large -\zeta处。随着\large \zeta增大,P1往原点移动,但永远小于0。而P2往负无穷远移动。而且,注意到,\large \zeta越大,P1越靠近原点,同时对应P2越远。如果\large \zeta\gg 1,那么可以近似P1=0,而P2=-2\large \zeta。,更一般地,\large p_2={-2\zeta- p_1}也就是说P1离原点越近,P2就需要离得越远。这种效应就是所谓的极点分离。

3、三电容电路:这个电路是一个benchmark。典型的例子就是二级运放。来看Miller补偿。

很多书上都有这个电路。输出\large V_o的传函分母如下:\large 1+s\cdot g_mr_{o1}r_{o2}C_c+s^2\cdot r_{o1}r_{o2}C_\Delta。其中\large C_\Delta=C_1C_L+C_1C_c+C_cC_L。这个式子在一阶项作了一个近似,即因为Miller效应,时间常数主要由\large C_c决定(所以这个电容也叫Miller补偿电容)。

把这个式子整理成上面的二阶阻尼形式,可以得到 \large \zeta=\frac{1}{2}\cdot \frac{C_2g_mr_{o1}r_{o2}}{\sqrt{c_\Delta r_{o1}r_{o2}}}。显然由于分母有了一个开根号操作,导致阻尼系数是随\large C_c增大而增大的,所以有这个所谓的极点分离作用。

由此可见,如果写出上述电路的完整形式,那么一阶项还包含了\large r_{o1}C_1+r_{o2}C_L,显然它们也会导致阻尼的增加,从而也会产生分离作用,只是系数上少了一项GmRo,导致这个现象不如Cc明显而已。

(常规的理解方式,就是Miller电容在V1处构成的主极点下降,在输出Vo处构成的次级点,由于Cc增大导致反馈增加,输出电阻减小,次级点上升。这种描述不能算错,但显然上述理解是更一般地情况。)

 

 

 

 

  • 5
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值