AI模型运行在计算机上,除了需要消耗大量的计算资源外,还需要大量的内存以及带宽用来存储和搬运数据。
在如今一个模型动辄几千亿个参数的情况下,模型运行的性能变得越来越重要,对计算机硬件的需求也水涨船高。而不论是工业界,还是产业界,针对AI模型的优化从未停止过!优化手段也从算法上的优化,扩展到了专用硬件上。
本系列,针对AI模型的优化问题,从算法以及硬件两个方面来一起聊一聊。
那么,就先从硬件加速的王者GPU说起。
王者GPU
GPU(Graphic Processing Unit),图形处理器,是英伟达在很早就推出的处理器,专门用来进行图形学的计算,用来显示游戏视频画面等,又称为显卡。
2006年,英伟达推出CUDA,这是一种专门针对GPU的编程模型,或者说软件库,它直接定义了异构编程的软件架构,为英伟达进入AI计算领域埋下了种子。
2012年,图像识别大赛,很多参赛队伍采用GPU完成AI加速,让英伟达乘上了人工智能的东风,从此,一跃成为人工智能硬件领域的绝对霸主,一直到今天。
这期间,国内外很多家公司都试图推出了自己的AI芯片,希望可以在人工智能硬件这一领域上分得一杯羹,但却始终无法撼动英伟达AI芯片老大的位置。
国外强如Google 的TPU,AMD以及ARM,国内如华为昇腾、百度昆仑、阿里平头哥等一线互联网企业,以及地平线、寒武纪、比特大陆等自研ASIC芯