跟踪微分器简介
PID控制通常具有的典型缺点为:
(1)PID是基于误差的控制方法,当初始误差较大时,PID控制产生的控制输入量会过大,此时将会产生较大的超调,这便是PID的快速性和超调性之间的矛盾;
(2)PID的微分信号时常会获取不够准确,因此微分项常常难以发挥其应有的作用;
跟踪微分器是用于解决PID控制缺陷的重要工具,事先产生过渡过程,提取含有随机噪音的输入信号以及输入信号的微分信号,再将其传入PID控制器。即TD会产生两个信号,一个是过渡信号,一个是过渡信号的微分信号,过渡信号可以理解为不超调的信号。
本文介绍线性跟踪微分器和非线性跟踪微分器。
线性跟踪微分器
线性跟踪微分器是根据一个典型的二阶系统得到的,典型的二阶系统传递函数的标准形式为:
Φ
(
s
)
=
G
(
s
)
1
+
G
(
s
)
H
(
s
)
=
ω
n
2
s
2
+
2
ξ
ω
n
s
+
ω
n
2
\Phi(s)=\frac{G(s)}{1+G(s)H(s)}=\frac{\omega_{n}^{2}}{s^2+2\xi\omega_{n}s+\omega_{n}^2}
Φ(s)=1+G(s)H(s)G(s)=s2+2ξωns+ωn2ωn2其中
ξ
\xi
ξ为阻尼比,
ω
n
\omega_n
ωn为无阻尼自然震荡频率。阻尼比控制趋于稳态的过程,
ξ
<
1
\xi<1
ξ<1,欠阻尼状态,系统的响应非常快,同时产生的超调变大;
ξ
>
1
\xi>1
ξ>1,过阻尼状态,此时系统无超调,但趋于稳态的时间变长,即响应变慢;
ξ
=
1
\xi=1
ξ=1是我们想要的状态,此时系统不会发生超调,同时响应时间也较短。
将
ξ
\xi
ξ设置成一,同时令
ω
n
=
r
\omega_n=r
ωn=r,此时的闭环传递函数变为:
Φ
(
s
)
=
r
2
s
2
+
2
r
s
+
r
2
\Phi(s)=\frac{r^{2}}{s^2+2rs+r^2}
Φ(s)=s2+2rs+r2r2上式中r表示系统的收敛速度,r越大收敛速度越快。
闭环传递函数表示为:
Y
u
=
r
2
s
2
+
2
r
s
+
r
2
\frac{Y}{u}=\frac{r^{2}}{s^2+2rs+r^2}
uY=s2+2rs+r2r2经过反拉氏变换得:
y
¨
+
2
r
y
˙
+
r
2
y
=
r
2
u
\ddot{y}+2r\dot{y}+r^2y=r^2u
y¨+2ry˙+r2y=r2u令
y
=
x
1
y=x_1
y=x1,
x
1
x_1
x1为系统的当前状态,
u
=
v
u=v
u=v,
v
v
v为目标状态。用状态方程的方式表达为:
{
x
˙
1
=
x
2
x
˙
2
=
y
¨
=
−
2
r
x
2
−
r
2
(
x
1
−
v
)
\begin{cases}\dot{x}_{1}=x_2&&\\\dot{x}_2=\ddot{y}=-2rx_2-r^2(x_1-v)\end{cases}
{x˙1=x2x˙2=y¨=−2rx2−r2(x1−v)
x
1
为过渡曲线,
x_1为过渡曲线,
x1为过渡曲线,
x
2
便是过渡曲线的微分
x_2便是过渡曲线的微分
x2便是过渡曲线的微分。由状态方程搭建simulink仿真模块如下:
上图中黄色曲线即为过渡曲线,蓝色曲线为过渡曲线的导数,利用TD搭建pid仿真模块为:
非线性跟踪微分器
{
x
˙
1
=
x
2
x
˙
2
=
u
\begin{cases}\dot{x}_1=x_2\\\dot{x}_2=u\end{cases}
{x˙1=x2x˙2=u其中u为常见的快速最优控制综合函数:
u
=
−
s
g
n
(
x
1
−
v
+
x
2
∣
x
2
∣
2
r
)
u=-sgn(x_1-v+\frac{x_2|x_2|}{2r})
u=−sgn(x1−v+2rx2∣x2∣)搭建仿真程序如下: