跟踪微分器(TD)

跟踪微分器简介

PID控制通常具有的典型缺点为:
(1)PID是基于误差的控制方法,当初始误差较大时,PID控制产生的控制输入量会过大,此时将会产生较大的超调,这便是PID的快速性和超调性之间的矛盾;
(2)PID的微分信号时常会获取不够准确,因此微分项常常难以发挥其应有的作用;
跟踪微分器是用于解决PID控制缺陷的重要工具,事先产生过渡过程,提取含有随机噪音的输入信号以及输入信号的微分信号,再将其传入PID控制器。即TD会产生两个信号,一个是过渡信号,一个是过渡信号的微分信号,过渡信号可以理解为不超调的信号。
本文介绍线性跟踪微分器和非线性跟踪微分器。

线性跟踪微分器

线性跟踪微分器是根据一个典型的二阶系统得到的,典型的二阶系统传递函数的标准形式为: Φ ( s ) = G ( s ) 1 + G ( s ) H ( s ) = ω n 2 s 2 + 2 ξ ω n s + ω n 2 \Phi(s)=\frac{G(s)}{1+G(s)H(s)}=\frac{\omega_{n}^{2}}{s^2+2\xi\omega_{n}s+\omega_{n}^2} Φ(s)=1+G(s)H(s)G(s)=s2+2ξωns+ωn2ωn2其中 ξ \xi ξ为阻尼比, ω n \omega_n ωn为无阻尼自然震荡频率。阻尼比控制趋于稳态的过程, ξ < 1 \xi<1 ξ<1,欠阻尼状态,系统的响应非常快,同时产生的超调变大; ξ > 1 \xi>1 ξ>1,过阻尼状态,此时系统无超调,但趋于稳态的时间变长,即响应变慢; ξ = 1 \xi=1 ξ=1是我们想要的状态,此时系统不会发生超调,同时响应时间也较短。
ξ \xi ξ设置成一,同时令 ω n = r \omega_n=r ωn=r,此时的闭环传递函数变为: Φ ( s ) = r 2 s 2 + 2 r s + r 2 \Phi(s)=\frac{r^{2}}{s^2+2rs+r^2} Φ(s)=s2+2rs+r2r2上式中r表示系统的收敛速度,r越大收敛速度越快。
闭环传递函数表示为: Y u = r 2 s 2 + 2 r s + r 2 \frac{Y}{u}=\frac{r^{2}}{s^2+2rs+r^2} uY=s2+2rs+r2r2经过反拉氏变换得: y ¨ + 2 r y ˙ + r 2 y = r 2 u \ddot{y}+2r\dot{y}+r^2y=r^2u y¨+2ry˙+r2y=r2u y = x 1 y=x_1 y=x1, x 1 x_1 x1为系统的当前状态, u = v u=v u=v, v v v为目标状态。用状态方程的方式表达为: { x ˙ 1 = x 2 x ˙ 2 = y ¨ = − 2 r x 2 − r 2 ( x 1 − v ) \begin{cases}\dot{x}_{1}=x_2&&\\\dot{x}_2=\ddot{y}=-2rx_2-r^2(x_1-v)\end{cases} {x˙1=x2x˙2=y¨=2rx2r2(x1v) x 1 为过渡曲线, x_1为过渡曲线, x1为过渡曲线, x 2 便是过渡曲线的微分 x_2便是过渡曲线的微分 x2便是过渡曲线的微分。由状态方程搭建simulink仿真模块如下:
在这里插入图片描述
在这里插入图片描述
上图中黄色曲线即为过渡曲线,蓝色曲线为过渡曲线的导数,利用TD搭建pid仿真模块为:
在这里插入图片描述

非线性跟踪微分器

{ x ˙ 1 = x 2 x ˙ 2 = u \begin{cases}\dot{x}_1=x_2\\\dot{x}_2=u\end{cases} {x˙1=x2x˙2=u其中u为常见的快速最优控制综合函数: u = − s g n ( x 1 − v + x 2 ∣ x 2 ∣ 2 r ) u=-sgn(x_1-v+\frac{x_2|x_2|}{2r}) u=sgn(x1v+2rx2x2)搭建仿真程序如下:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值