AUV直线路径跟踪仿真-反步滑模方法

文章介绍了AUV在水平面进行直线路径跟踪的控制策略,采用反步法设计纵向推力控制器,利用滑模方法设计艏向角控制器。在Simulink中进行了仿真,包括速度推算、制导误差和滑模面函数计算,以及海流干扰的处理。仿真结果显示AUV跟踪效果良好,验证了控制器的有效性。
摘要由CSDN通过智能技术生成

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

文章目录

前言

一、整体思路

二、控制器设计

1.纵向推力-反步法

2.转艏力矩-滑模方法

三、虚拟AUV速度推算

四、仿真实现

1.艏向制导误差和滑模面函数

 2.控制器和模型解算

3.解耦速度得到艏向角和漂角

 4.积分速度得到位置信息

 5.得到位置误差和趋近角信息

6.海流干扰

7.可视化

1.位置误差

2.期望路径

3.控制力

 五、仿真结果分析

前言

本文进行AUV水平面的直线路径跟踪的控制设计和simulink的仿真搭建。


提示:以下是本篇文章正文内容,下面案例可供参考

一、整体思路

将整个AUV系统进行解耦,将直线路径跟踪问题转化为对AUV速度和艏向角的控制,并分别设计控制器,其中,纵向速度控制时运用反步法进行控制器设计,艏向角控制则利用滑模方法。在本文中,所涉及的AUV含有主推和垂直舵,属于欠驱动,缺少横向输入。

二、控制器设计

1.纵向推力-反步法

期望速度u^{_{d}}=1m/s,根据反步法原理进行设计,具体参考:

AUV控制中的反步法_工程湛湛的博客-CSDN博客

得到的控制力应当为:

F_{u}=m_{u}(\dot{u}_{d}-K_{1}(u-u_{d}))+d_{u}

为进一步增强控制性能,结合李雅普诺夫函数的一阶导小于零的要求,在控制率中引入了有利于控制的非线性项:

-K_{2}(\sqrt{\left | u-u_{d} \right |}\cdot tanh(u-u_{d}))

则纵向推力重新变为:

F_{u}=m_{u}(\dot{u}_{d}-K_{1}(u-u_{d})-K_{2}(\sqrt{\left | u-u_{d} \right |})\cdot tanh(u-u_{d}))+d_{u}

2.转艏力矩-滑模方法

在进行转艏力矩的设计之前,需要先了解两个知识点,一个是Serret-Frenet坐标系,另一个是视线法。参考:

基于Serret-Frenet坐标系下的跟踪误差方程_工程湛湛的博客-CSDN博客

AUV路径跟踪视线法(Line Of Sight)制导原理_工程湛湛的博客-CSDN博客

根据AUV视线法的制导原理,需要AUV的航迹角与SF坐标系与定系夹角的差值向趋近角趋近,此时我们定义趋近误差为:

\psi_{e}=\psi+\beta-\phi_{F}-\delta

通过滑模方法进行转艏力矩控制器设计的过程参考:

滑模方法设计AUV路径跟踪转艏力矩_工程湛湛的博客-CSDN博客

最后得到的控制率为:

N=m_{r}(-k_{1}\dot{\psi}_{e}-\epsilon tanh(s)-k_{2}s-\ddot{\beta}+\ddot{\phi}_{F}+\ddot{\delta})+d_{r}

至此,便得到了纵向推力和转艏力矩的控制率。

三、虚拟AUV速度推算

参考:虚拟向导AUV的速度推算_工程湛湛的博客-CSDN博客

得到的三维虚拟向导速度为:

\dot{s}=U_{B}cos\psi_{e}cos\theta_{e}+k_{s}x_{e}

结合水平面的特点,\theta_{e}=0,则:

\dot{s}=U_{B}cos\psi_{e}+k_{s}x_{e}

根据输入,在Simulink中得到s的一阶导:

上式中phie为定系与SF坐标系的夹角:

 随后在path1的s函数中定义所要跟踪的期望路径,输出期望路径的SF坐标系与定系的夹角和横向期望路径和纵向期望路径信息。

四、仿真实现

以下按照笔者思路,进行整个Simulink仿真程序的复现。

1.艏向制导误差和滑模面函数

首先得到AUV的航迹角和SF坐标系与定系的夹角:

得到phi角,通过该角对趋近角的趋近即可完成AUV的制导,因此得到的误差角为:

 根据误差得到的滑模面函数为:

 2.控制器和模型解算

 根据所设计的纵向推力和转艏力矩,设计一系列的输入,得到控制力的输出:

得到控制力后输入到AUV的水平面动力学模型进行解算,从而得到AUV的速度信息,水平面的模型表示为:

 仿真中current为海流干扰,通过相对速度对AUV的速度进行修正,即correct,最后输出AUV的纵向速度、横向速度和转艏角速度,并计算出AUV的和速度vt。

3.解耦速度得到艏向角和漂角

对模型解算得到的速度信息解耦,计算得到艏向角信息:

由横向速度和纵向速度得到漂角信息:

 4.积分速度得到位置信息

对得到的速度信息进行积分处理,同时设置位置的初始值,便可得到AUV的实时位置信息:

 在积分器中进行初始值的设置。

 5.得到位置误差和趋近角信息

通过得到对速度积分得到的实时位置信息,以及SF坐标系得到的期望路径信息,做差得到误差信息,再通过坐标变换将误差转换到定系,转换角为phif,在得到横向误差之后计算得到趋近角。

6.海流干扰

通过设置AUV在定系中的速度,然后通过艏向角将速度转换到动系,便得到了在动系下的海流速度信息,和AUV速度进行做差,便得到了AUV相对海流的相对速度。

7.可视化

1.位置误差

2.期望路径

3.控制力


 五、仿真结果分析

搭建完后设置仿真时间为200s运行,得到的仿真结果。

纵向速度:

横向速度:

艏向角速度:

 纵向推力:

转艏力矩:

 横向位置误差:

 纵向位置误差:

 制导误差角信息:

 期望路径二维图:

AUV位置二维图像:

 从仿真结果来看,AUV的跟踪效果良好,说明了所设计控制器的有效性。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值