MIT-BEVFusion系列一:初见

BEVFusion是一种多传感器融合框架,尤其在MIT的版本中,它通过统一的鸟瞰视图表示多种模态特征。NVIDIA提供了CUDA-BEVFusion部署方案,实现了高精度与高速运行。文章探讨了BEVFusion的技术背景、应用价值和实施挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

零、简单了解下BEVFusion

一、BEVFusion所需条件

  • 软、硬件条件

    • 显卡尽量不要低于3090显卡性能。
    • NVIDIA的Lidar_AI_Solution中CUDA-BEVFusion要求如下:
      在这里插入图片描述
  • 知识储备

    • MIT-BEVFusion部分: python基础 以及 一点点想象力
    • 量化、onnx导出: 量化基础、onnx.helper、钩子函数
    • TensorRT: TensorRT、C++、CUDA基础

二、为什么要了解BEVFusion

2021 年是自动驾驶开启商业化的元年,自动驾驶进入商业化探索的快车道,主要的国家加快政策法规突破以促进自动驾驶商业化。(来源:中国信息通信研究院和人工智能与经济社会研究中心)。一系列因素都促使学界、工业界不断探索,加速落地。

2.1 技术上,它是自动驾驶领域比较热门的路线之一

特斯拉代表的纯视觉方案,在自动驾驶领域独树一帜。

BEVFusion属于配备了多种传感器,使用多种传感器融合的自动驾驶系统方案,也同样极具竞争力。

  • 简单了解下多种传感器融合的方案的特点。
    • 1)多个传感器优势互补
      • 例如,Waymo的自动驾驶车辆有29个摄像头,6个雷达,和5个激光雷达。不同的传感器提供互补的信号。
        • 下方是MIT-BEVFusion使用的多个传感器及网络在这里插入图片描述在这里插入图片描述
    • 2)多模态的特征统一表示
      • 对于多传感器,找到一个适用于多任务多模态特征融合的统一表示很重要。来自不同传感器的数据以根本不同的方式表示。例如,摄像头以透视视图捕捉数据,而激光雷达以3D视图捕捉数据。为了解决这种视图差异,我们必须找到一个适用于多任务多模态特征融合的统一表示。

2.2 车企在研、在用的算法。

  • 国内在搞BEV的有造车新势力:小鹏、蔚来、理想等,科技公司:百度、华为、毫末智行等。
  • 小鹏BEV感知技术架构XNet以视觉为主、以雷达为辅。
  • 蔚来已经推送的Banyan2.0.0版本,切换为了BEV架构。

2.3 MIT-BEVFusion提供新范式

    • 高效通用的多任务多传感器融合框架,能够在共享的鸟瞰视图表示空间中统一多模态特征。这个融合框架保留了几何和语义信息,并且能够在极小的架构变动下支持不同的3D感知任务,在nuScenes基准测试上确立了新的最先进性能。
    • 更加贴近工程的BEV融合算法
    • MIT-BEVFusion的架构的允许通过定制网络的“head”来适应不同的任务。

2.4 MIT-BEVFusion NVIDIA提供成熟部署方案

BEVFusion部署十分困难。NVIDIA官方实现并开源了BEVFusion部署方案,在保证高精度的同时,能够达到25FPS。

在这里插入图片描述

  • 难点
    • backbone的选择
    • 稀疏卷积onnx导出onnx、推理复杂。
    • transformer结构带精度问题–decode导出要使用FP16精度。
    • bevpool部署实现的选择。
    • 量化的技巧
### 实现 MIT BEVFusion 项目代码复现教程 #### 准备工作 为了顺利进行BEVFusion项目的代码复现,确保安装了必要的依赖库和工具。这些准备步骤包括但不限于Python版本的选择、虚拟环境的创建以及特定软件包的安装。 #### 安装依赖项 按照官方文档说明来设置开发环境是非常重要的。通常情况下,建议使用`conda`管理环境以简化依赖关系处理过程[^2]: ```bash conda create -n bev_env python=3.8 conda activate bev_env pip install -r requirements.txt ``` #### 数据集获取与预处理 获得适当的数据集对于训练模型至关重要。根据BEVFusion的要求下载所需数据集,并遵循其指定的方式完成数据预处理操作。这可能涉及到将原始传感器读数转化为适合输入给定网络架构的形式,比如通过VoxelNet处理激光雷达点云数据[^1]。 #### 模型构建 理解并实现多模态融合的核心在于掌握不同传感模式间信息交互机制的设计原理。具体来说,在本案例中是指如何有效地将在BEV视角下的图像特征同LiDAR特征相结合。此部分涉及到了解两个主要流程——即从摄像头视频帧提取语义丰富的视觉描述子及其向BEV坐标的映射方法;还有就是怎样利用全卷积神经网络(FCN)达成异构源间的无缝衔接[^3]。 #### 训练与评估 旦完成了上述准备工作,则可以着手于实际的实验环节。调整超参数直至找到最优组合,并定期保存检查点以便后续分析性能表现。此外,还需定义合理的评价指标体系用于衡量最终成果的好坏程度。 #### 调试优化 面对可能出现的各种问题时,耐心细致地排查错误根源所在显得尤为关键。无论是硬件资源不足还是算法逻辑缺陷都可能是造成进度受阻的原因之。针对这些问题采取有效的解决措施能够显著提升工作效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值