我说CMMI 2.0 之:原因分析与解决方案

本文深入解析CAR(原因分析与解决方案)方法,涵盖原因分析的基本思想、实践步骤及统计技术的应用,旨在提升问题解决效率和预防措施的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原因分析与解决方案(CAR)是对选中的现象识别原因,并采取纠正措施或预防措施。

 

基本的思想

组织内的好事和坏事都可以做CAR,并非仅仅是对坏事做CAR。可以在计划阶段做CAR,也可以在事情发生后再做CAR, 前者是根据估计的结果做CAR,后者是根据实际执行的结果做CAR。

在做原因分析时,是从现象,到数据,然后再到原因。数据准确刻画了现象,并有助于识别真正的原因。

原因有浅层次的直接原因,也有深层次的根本原因,对直接原因采取纠正措施,对根本原因采取预防措施。

 

实践列表:

CAR

1.1

Identify and address causes of selected outcomes. 

识别并处理选中现象的原因

CAR

2.1

Select outcomes for analysis. 

选择要分析的现象

CAR

2.2

Analyze and address causes of outcomes. 

分析并处理现象的原因

CAR

3.1

Determine root causes of selected outcomes by following an organizational process. 

遵从组织级的流程确定选中现象的根因

CAR

3.2

Propose actions to address identified root causes. 

提出行动建议以处理识别的根因

CAR

3.3

Implement selected action proposals. 

实施选中的行动建议

CAR

3.4

Record root cause analysis and resolution data. 

记录根因分析和解决方案的数据

CAR

3.5

Submit improvement proposals for changes proven to be effective. 

为已经证明有效的变更提交改进建议

CAR

4.1

Perform root cause analysis of selected outcomes using statistical and other quantitative techniques. 

采用统计和其他量化技术对选中的现象执行根因分析

CAR

4.2

Evaluate the effect of implemented actions on process performance using statistical and other quantitative techniques.

采用统计和其他量化技术评价已实施行动的对过程性能的变化效果

CAR

5.1

Use statistical and other quantitative techniques to evaluate other solutions and processes to determine if the resolution should be applied. 

使用统计和其他量化技术评价其他解决方案或过程以确定是否应用某解决方案

 

实践通俗解释:

CAR 2.1 选择要进行原因分析的现象

并非所有的事情都要做正式的原因分析,原因分析也是有成本的,要挑选值得分析的现象做原因分析。比如:

预计项目的目标达成概率比较低;

有些错误重复发生;

交给给客户以后发生了严重缺陷;

发生了客户投诉;

某大型项目顺利结题;

等等。

 

CAR 2.2 分析并采取措施

       分析原因的方法有多种:鱼骨图、5-whys法、头脑风暴等等。

       措施与纠正措施与预防措施之分。

 

CAR 3.1 采用组织级的流程识别根本原因

何为根本原因?两种判定方法:

方法一,比较简单直观,MIN process法:

Missing process:没有定义流程;

Incomplete process: 流程定义不完整;

Not followed: 定义了流程,没有按流程执行。

方法二,从预防问题的角度思考:

       当解决了这个原因,是否这个问题还会发生?

    当解决了这个问题,是否类似的问题还会发生?

组织级要定义了根因分析的相关流程。

 

CAR 3.2 针对根本原因提出预防措施。

       

CAR 3.3 实施预防措施。

       

CAR 3.4 记录过程的中的相关数据。

 

CAR 3.5 验证了预防措施成功后,修改组织级体系流程或推广到其他项目组。

 

CAR 4.1 进行根因分析时,要采用统计技术,如:相关性分析,回归分析,假设检验,方差分析等。

 

CAR 4.2 采用统计技术分析预防措施的效果。

有效的预防措施会改变:

过程性能基线:分布的位置移动(均值,中位数等)或分布的离散程度(方差,标准差,四分位差等)变小。

       过程性能模型:对于线性回归方程而言,斜率改变或截距改变。

 

CAR 5.1 采用统计技术分析其他的解决方法、其他过程是否可以将预防措施推而广之。

除了采取的解决方案,是否还有更优的方案能比当前的方案效果更好?

除了改进的这个流程,是否还有其他流程也可以进行类似的改进?

 

可借鉴的具体做法:

可以参考福特公司的8D方法进行根因分析:

上述两张图片来自网络。

### CAR 计算公式的定义 累计超额收益率(Cumulative Abnormal Return, CAR)用于评估特定事件对股票价格的影响。其核心在于通过比较实际收益率预期收益率来量化异常表现。具体而言,CAR 是在某一时间窗口内每日超额收益率(Abnormal Return, AR)的累加。 #### 超额收益率计算公式 超额收益率 \(AR_{i,t}\) 的计算公式为: \[ AR_{i,t} = R_{i,t} - R_{m,t} \] 其中: - \(R_{i,t}\) 表示公司 \(i\) 在第 \(t\) 天的实际收益率[^2]; - \(R_{m,t}\) 表示市场在同一时间段内的收益率。 #### 累计超额收益率计算公式 对于给定的时间窗口 \([T_1, T_2]\),CAR 可以表示为: \[ CAR(T_1, T_2) = \sum_{t=T_1}^{T_2} AR_{i,t} \] 如果选取短期窗口为 (-5, 5),则对应的 CAR 值记作 \(CAR(-5, 5)\)。 --- ### 实现 CAR 计算的 Python 示例代码 以下是基于上述公式的 Python 实现: ```python import numpy as np def calculate_car(actual_returns, market_returns): """ 计算指定时间窗口内的累计超额收益率 (CAR) 参数: actual_returns (list): 公司实际日收益率列表 market_returns (list): 对应日期的市场收益率列表 返回: float: 时间窗口内的累计超额收益率 (CAR) """ abnormal_returns = [actual - market for actual, market in zip(actual_returns, market_returns)] car = sum(abnormal_returns) return car # 示例数据 actual_returns = [0.02, 0.01, -0.01, 0.03, 0.02, 0.01, -0.02, 0.01, 0.02, 0.03] # 公司实际收益率 market_returns = [0.01, 0.01, -0.02, 0.02, 0.01, 0.02, -0.01, 0.01, 0.01, 0.02] # 市场收益率 car_value = calculate_car(actual_returns, market_returns) print(f"Cumulative Abnormal Return (CAR): {car_value:.4f}") ``` 此代码实现了 CAR 的基本计算逻辑,并允许用户输入不同的实际收益率和市场收益率序列。 --- ### 关于长期并购绩效 BHAR 的补充明 除了短期的 CAR 指标外,在金融研究中还常用持有期收益率(Buy-and-Hold Abnormal Returns, BHAR)来衡量长期并购绩效。BHAR 定义为首次公告日后一定时期(通常为 12 个月)内并购方股票的总回报率减去同期市场的总回报率。 --- ### 相关概念对比 | **指标名称** | **描述** | |--------------------|--------------------------------------------------------------------------------------------| | CAR | 测量短期内(如 [-5, 5] 日)因某事件引发的股价异常波动累积效果 | | BHAR | 测量长期内(如 1 年)并购对公司股东价值创造的整体影响 | | 跟踪误差 | 度量基金收益其基准指数之间偏离程度的标准差,反映基金管理中的风险水平 | 以上三个指标分别适用于不同场景下的财务分析需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值