基于结构的虚拟筛选:加速药物发现的关键技术
1. 引言
计算机辅助药物设计(CADD)已经成为现代药物发现中不可或缺的一部分,尤其是在加速药物发现和优化的过程中发挥了重要作用。基于结构的虚拟筛选(Structure-based virtual screening, SBVS)作为CADD的重要组成部分,利用已知目标蛋白的三维结构来筛选大量的化合物数据库,以找到可能与目标蛋白结合的潜在药物分子。这种方法在过去的几十年里随着高质量蛋白质三维结构的不断涌现而变得极为流行。
2. 基于结构的虚拟筛选概述
基于结构的虚拟筛选是一种通过计算机模拟来评估化合物与目标蛋白结合能力的技术。其基本原理是通过分析目标蛋白的活性位点特性,筛选出具有高结合亲和力的化合物。这种方法不仅可以大幅减少实验筛选的时间和成本,还可以提高药物发现的成功率。以下是基于结构的虚拟筛选的一些关键特点:
- 高通量筛选 :能够在短时间内筛选大量化合物。
- 高效性 :通过计算方法快速评估化合物的结合亲和力。
- 准确性 :基于已知的蛋白质结构,预测化合物的结合模式更为准确。
2.1 分子对接
分子对接(Molecular docking)是基于结构的虚拟筛选中最常用的方法之一。分子对接通过模拟配体(化合物)与受体(目标蛋白)之间的相互作用,预测两者结合的最佳构象。常用的分子对接工具包括AutoDock、GOLD等。
超级会员免费看
订阅专栏 解锁全文
661

被折叠的 条评论
为什么被折叠?



