外汇行业的历史趣事

外汇行业是世界上最大的行业之一,存在很多趣闻,这些趣闻可以让一个严肃而枯燥的行业变得生动起来。今天我们就来分享一些你可能还不知道的外汇行业趣闻:

1、历史上最严重的货币波动

现在的汇率波动一般都很小。尽管今年的委内瑞拉通胀率飙升惊人,不过还是比不上“老前辈”津巴布韦。2008年的津巴布韦元创下了历史上最严重的货币波动记录,通货膨胀率惊人的高达6500,000,000,000%。

2、全球日均外汇交易量够你买多少车?

根据国际清算银行每隔3年的调查,截至2016年,外汇市场的日均交易量已经达到了5.088万亿美元。尽管比起2013年有所减少,不过这些钱依然足够你为美国的每一个家庭买2辆不错的小车——不过要给每个家庭买几平方米的学区房可能还是有点困难。

3、英国是全球最大的外汇市场

很多人可能觉得美国是外汇交易的中心,但事实并非如此。全球36.7%的外汇交易都发生在英国,尽管由于诸多原因,导致数据比起前些年的41%有所下滑,但目前来看,依然无法撼动英国的霸主地位。排名第二和第三的分别为美国(占17.9%)和日本(占6.2%)。

4、大多数零售外汇交易者无法连续1年保持盈利

我们都想在外汇市场盈利。但是大多数人却并不擅长交易。据调查,99.6%的零售外汇交易者都无法做到连续4个季度处于盈利中。如果你做到了,那么请给自己一个大大的赞。

5、英镑/美元又被称作“Cable”

在光纤技术和全球通讯卫星技术出现之前的1858年,英美在两国之间的大西洋铺设了缆线(Cable),用来传输两国的电报信息。如今这些缆线依然在兢兢业业地传递着两国之间的货币交易信息。因此,至今英镑/美元都被称作“Cable”。

6、花旗银行是全球外汇头号玩家

根据 Euromoney 发布的2017年最新排行显示,花旗银行凭借10.74%的外汇市场占有率拔得头筹,占有10.34%份额的摩根大通紧随其后 , 排名第三的瑞银占有率为7.56%。

2015年德意志银行曾凭借14.6%的市场份额赢得了外汇市场头号玩家的殊荣,不过随后几年却连年下滑,2016年是7.88%,到了2017年只有5.68%。同时,曾在外汇市场占统治地位的国际银行的市场份额也都在逐渐缩水,2009年前5大银行占比超过61%,而2017年仅剩41%。

7、现代外汇市场始于1973年

外汇交易历史悠久,但是现代外汇市场是从1973年开始的——这一年是布雷顿森林体系被废除、浮动汇率时代来临的分界线。

在第二次世界大战后,布雷顿森林协议签署。根据协议,各国货币对美元的汇率只能在法定汇率上下波动1%以内。之后,尼克松总统废除了布雷顿森林协议,固定兑换汇率失效。此后开始迎来浮动汇率系统。1972年至1973年3月,由于布雷顿森林协议以及欧洲联合浮动协议的影响,外汇市场被关闭。1973年是现代外汇市场真正的历史转折点。在这一年,国家之间的汇率约束、银行交易及受限制的外汇交易时代结束,市场开始进入全面的浮动汇率时代。

8、外汇交易历史可以追溯到圣经时代

尽管现代外汇市场的历史不算太长,但是资金交易却由来已久。在《犹太教法典》时期,就已经出现“兑换商”,他们主要帮助别人兑换货币,然后收取佣金或者费用。这些人在城市占据一个小角落,或者在外邦人常出入的寺庙外设摊。

9、1908年以前,美国银行可以印刷自己的货币

美联储直到1908年才正式成立。在这之前,任何美国银行都可以发行自己的货币。这可以说是一个国家缺乏财政管控的结果。1907年美国曾爆发过持续了三周的金融大恐慌。十月中旬危机爆发时纽约证券交易所的股价相比去年峰值下跌了50%。经济衰退引发了恐慌,出现了很多对银行和信托公司的挤兑事件。幸而有J.P摩根的干预恐慌才没有进一步蔓延。次年,小约翰·洛克菲勒的岳父、参议院尼尔森·欧德里奇建立并主持委员会调查此次危机并提出今后的解决方案,由此带动了联邦储备系统的建立。

10、英镑曾经统治了全球外汇市场

如今交易量最大的货币毫无疑问是美元,占据全球近90%的交易。但是在20世纪早期,英镑才是全球货币。1913年,几乎一半的全球外汇交易都涉及英镑。

感谢阅读,文章内容仅供参考,不构成投资建议。

凡注明为其他媒体来源的信息,均为转载,版权归版权所有人所有。

如有未注明作者及出处的文章和资料等素材,请版权所有者联系我们,我们将及时补上或者删除。

END

 

### 构建RAG系统初学者指南 #### 定义RAG系统 检索增强生成(Retrieval-Augmented Generation, RAG)是一种结合了密集向量索引和自然语言处理模型的技术,用于提高文本生成的质量和准确性。通过利用外部知识库中的信息来补充训练数据集的信息不足之处。 #### 准备工作环境 为了从头开始创建一个简单的RAG系统,首先需要安装必要的软件包并设置开发环境。对于Python用户来说,可以依赖Hugging Face Transformers库以及Faiss或其他相似的矢量化搜索引擎来进行实现[^2]。 ```bash pip install transformers faiss-cpu datasets torch ``` #### 数据收集与预处理 构建有效的RAG应用之前,获取高质量的数据源至关重要。这些资源可能包括但不限于网页抓取的内容、百科全书条目或是特定领域内的文档集合。接着要对原始素材执行清洗操作去除噪声,并将其转换成适合后续使用的格式。 #### 创建语料库索引 一旦拥有了经过清理后的文本片段列表,则可以通过编码器将它们映射到高维空间里的稠密表示形式——即所谓的嵌入(embeddings),之后再把这些嵌入存储在一个高效的近似最近邻(Near Neighbor Search,NNS)结构里以便快速查找最相关的项。 ```python from sentence_transformers import SentenceTransformer import numpy as np import faiss # 使用预训练的语言模型作为编码器 encoder = SentenceTransformer('all-MiniLM-L6-v2') # 假设有如下一些句子组成的语料库 corpus_sentences = ["Example document one.", "Another example text."] # 获取每篇文档对应的embedding embeddings = encoder.encode(corpus_sentences) # 初始化FAISS索引并向其中添加所有的embeddings dimensionality = embeddings.shape[1] index = faiss.IndexFlatL2(dimensionality) index.add(np.array([emb.tolist() for emb in embeddings])) ``` #### 集成查询接口 最后一步就是设计能够接收输入问题并将之转化为潜在匹配答案的过程。这通常涉及到先计算询问字符串相对于整个数据库内各个项目的相似度得分;随后挑选出排名靠前的结果返回给调用方。 ```python def retrieve_top_k(query: str, k=5): query_embedding = encoder.encode([query]) distances, indices = index.search( np.array(query_embedding).astype("float32"), k=k ) top_results = [(distances[0][i], corpus_sentences[idx]) for i, idx in enumerate(indices[0])] return sorted(top_results, key=lambda x:x[0]) print(retrieve_top_k("Find me something interesting")) ``` 以上代码展示了如何基于已有的工具链搭建起基本框架,在此基础上还可以进一步探索优化策略比如微调编码组件或者引入更复杂的评分机制等方法提升性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值