[置顶] 【学习排序】 Learning to Rank中Pointwise关于PRank算法源码实现

标签: 学习排序 PRank Pointwise Learning to Rank 代码实现
18919人阅读 评论(38) 收藏 举报
分类:

    最近终于忙完了Learning to Rank的作业,同时也学到了很多东西.我准备写几篇相关的文章简单讲述自己对它的理解和认识.第一篇准备讲述的就是Learning to Rank中Pointwise的认识及PRank算法的实现.主要从以下四个方面进行讲述:
   
1.学习排序(Learning to Rank)概念
    2.基于点的排序算法(Pointwise)介绍
    3.基于顺序回归(Ordinal Regression-based)的PRank排序算法
    4.PRank算法Java\C++实现及总结

一. 学习排序(Learning to Rank)概念

    学习排序概念推荐转载的文章:机器学习排序之Learning to Rank简单介绍
    1.首先,为什么会出现学习排序呢?
    传统的排序方法是通过构造一个排序函数实现,在Information Retrieval领域一般按照相关度进行排序。比较典型的是搜索引擎中一条查询query,将返回一个相关的文档document,然后根据(query,document)之间的相关度进行排序,再返回给用户。
    而随着影响相关度的因素(如PageRank)变多,Google目前排序方法考虑了200多种方法。这使得传统排序方法变得困难,人们就想到通过机器学习来解决这一问题,这就导致了Learning to Rank的诞生。

    2.然后是学习排序的基本流程如下图所示.
    很明显它就是基本步骤就是通过训练集数据(Train Set)学习得到模型h,然后通过该模型去对测试集数据(Test Set)进行计算和排序,最后得到一个预测的结果.


    3.那么,学习排序的数据集是怎样的一个东西呢?也就是上图中x、y、h分别代表着什么呢?
   
数据集可参考微软136维数据——MSLR-WEB10K 它是2010年的数据.形如:
    
 =============================================================
                                      0 qid:1 1:3 2:0 3:2 4:2 ... 135:0 136:0 
                                      2 qid:1 1:3 2:3 3:0 4:0 ... 135:0 136:0 
           =============================================================
           其数据格式: label qid:id  feaid:feavalue  feaid:feavalue ...
   
每行表示一个样本,相同的查询请求的样本qid相同,上面就是两个对qid为“1”的查询;label表示该样本和该查询请求的相关程度,该label等级划分方式为 {Perfect, Excellent,Good, Fair, Bad} 共五个类别,后面对应的是特征和特征值,我们通常使用的<X,Y>即是<特征量,人工标注>.
    同样你也可以使用比较经典的2007的数据集——
LETOR4.0,它是46维数据.如下图所示:

    它表示每行相当于一个Document(样本文档),第一行是样本相关程度,在46维中label共三个值:2-完全相关、1-部分相关、0-不相关;同时qid相同表示同一个查询对应多行样本;中间是46维特征之,最后#相当于注释解释.
    4.如果你还是不清楚,我换成通俗的例子解释:


    比如,现在你在Google浏览器中输入"Learning to Rank",它就相当于一个qid.而下面列出的各个链接就是多个样本集合,其中每一个都有200多种影响因素(如其中一种PageRank).在学习过程中需要找到一个模型来预测新查询文档的得分,并排序计算出用户最想要的结果.
    PS:这是我的个人理解,如果有错误或不足之处,欢迎提出!
 

二. 基于点的排序算法(Pointwise)介绍

    机器学习解决排序学习问题可分为3类:
    1.基于回归排序学习(regression-based algorithms):序列转为实数
    2.基于分类排序学习(classification-based algorithms):二值分类
    3.基于顺序回归排序学习(ordinal regression-based algorithms)

    但是这里我想讲述的是最常见的分类,它们应该与上面是交叉的:
    1.基于点的LTR算法——Pointwise Approach
    2.基于对的LTR算法——Pairwise Approach
    3.基于列的LTR算法——Listwise Approach

    Pointwise处理对象是一篇文档,将文档转化为特征向量后,机器学习系统根据训练得出的模型对文档进行打分(注意:训练集学习出权重模型去给测试集文档打分是LTR中非常经典的用法),打分的顺序即为搜索排序的结果.
   
Score(x)=w1*F1+w2*F2+w3*F3+...+w136*F136
    其中w1-w136为136维对应权重参数,由训练集训练得到;F1-F136为测试文档给出136个特征值.
    原数据有5个类标(0-4代表相关程度:Perfect>Excellent>Good>Fair>Bad),则设置5个阈值来区分所得分数的分类.如果得分大于相关阈值,则划分为相应的类.常见算法包括:Prank、McRank
    下面是我自己画的一张图,其中四根红线是四个阈值,它把这些文档集划分为了五个不同类.每当一个新的文档来测试,它都会根据已有模型计算出相应分数,再根据分数和阈值划分类即可.



三. PRank算法介绍

    PRank算法是基于点的排序学习,顺序回归学习问题.其算法主要参考Kolby Crammer & Yoram Singer(From:The HeBrew University,以色列希伯来大学)论文《Pranking with Ranking》.网址如下:
    http://papers.nips.cc/paper/2023-pranking-with-ranking.pdf
    算法过程如下:

    算法描述:(感觉算法一目了然,但是我功力不够描述不清楚)
    对于46维数据而言,它存在3个类标(0-2).故上述算法中初始阈值b[0]=b[1]=b[2]=0,b[3]=正无穷.
    注意它只有一层循环For(1...T)表示样本集的总行数,而没有进行迭代(CSDN三国那个例子含迭代错误);它主要是通过预测标号y~和实际标号y进行对比,来更新权重和阈值.

    在H排序决策函数中,它通过K个阈值b把空间划分为K个连续的子空间,每个子空间对应一个序列号,即满足所有的样本x都有相同的排序结果.对每个样本,先计算权重w与xi的内积w·x,找出所有满足w·x-br中最小的br,并将此br对应的序标号xi作为排序模型对样本的预测排序结果.
    推荐中文资料:南开大学论文《基于PRank算法的主动排序学习算法》

四. PRank算法Java\C++实现及总结

    1.Java代码实现
   
代码中有详细注释,每个步骤都是按照上面的算法进行设计的.左图是主函数,它主要包括:读取文件并解析数据、写数据(该函数可注释掉,它是我用于验证读取是否正确时写的)、学习排序模型和打分预测.右图是预测排序结果的算法.

   代码如下:
package com.example.pointwise;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;

/**
 * Pointwise基于点学习排序(Learning to Rank)的Prank算法
 * @author Eastmount YXZ
 * 参考资料
 * 该算法从136维数据集改成46维数据集,中间可能有注释不一致现象
 * (原始论文) http://papers.nips.cc/paper/2023-pranking-with-ranking.pdf
 * (新浪) http://blog.sina.com.cn/s/blog_4c98b960010008xn.html
 * (CSDN)http://blog.csdn.net/pennyliang/article/details/17333373
 */
public class Prank {
	
	public int RANK_NUM = 10000; //记录总样本数 (总行数)
	public int RANK_CATA = 46;   //排序的特征维数 (数据集136维 后改为46维)
	public int RANK_ITER = 1;    //排序的迭代次数 (原文迭代1次)
	public int RANK_LABEL= 3;    //排序划分的阈值 (微软数据集划分5类 0-4) 3维全相关,部分相关,不相关
	
	//采用该方法实现动态数组添加数据
	List<Float> weight = null;   //特征值的权重向量 (46个 136个)
	//训练集数据 每行共48个数据  (46个特征值 二维数组-feature[行号][46] + 真实Label值0-2 + qid值)
	List<List<Float>> x = null;       
	Float [] b = null;           //阈值数 K+1个(RANK_LABEL+1)
	public int sumLabel = 0;     //文件总行数 (标记数)
	
	/**  
	 * 函数功能 读取文件
	 * 参数 String filePath 文件路径
	 */
	public void ReadTxtFile(String filePath) throws IOException {
		String encoding="GBK";
		File file = new File(filePath);  //文件
		BufferedReader bufferedReader = null;
		try {
			//判断文件是否存在
			if(file.isFile() && file.exists()) { 
				//输入流
				InputStreamReader read = new InputStreamReader(new FileInputStream(file), encoding); 
			    bufferedReader = new BufferedReader(read);
				String lineTxt = null;
				sumLabel =0;  //记录总样本数
				x = new ArrayList<List<Float>> ();
				
				//按行读取数据并分解数据
				while((lineTxt = bufferedReader.readLine()) != null) {
					String str = null;
					int lengthLine = lineTxt.length();
					List<Float> subList=new ArrayList<Float>();
					x.add(subList);
					//获取数据 字符串空格分隔
                	String arrays[] = lineTxt.split(" ");
                	for(int i=2; i<arrays.length; i++) {
                		if(i>=48) { //#号后跳出 后面注释不进行读取
	    					continue;
	    				}
                		 //获取特征:特征值 如1:0.0004
                		String subArrays[] = arrays[i].split(":");
                		int number = Integer.parseInt(subArrays[0]); //判断特征 
	    				float value = Float.parseFloat(subArrays[1]); 
	    				subList.add(value);	
                	}
                	//获取每行样本的Label值 i=0 (五个等级0-4)
                	subList.add(Float.parseFloat(arrays[0]));
                	//获取qid值 i=1
                	String subArrays[] = arrays[1].split(":");
                	subList.add(Float.parseFloat(subArrays[1]));
                	//总行数+1
                	sumLabel++;  
				} //End 按行读取
				read.close();
			} else {
        		System.out.println("找不到指定的文件\n");
        	}
		} catch (Exception e) {
            System.out.println("读取文件内容出错");
            e.printStackTrace();
        } finally {
        	bufferedReader.close();
        }
	}
	
	/**
	 * 函数 写文件
	 * 参数 String filePath 文件路径
	 * 注意 该函数还是136维数据,但算法该成46维 故不使用该函数 
	 */
	public void WriteTxtFile(String filePath) {
		try {
			System.out.println("文件输出");
			String encoding = "GBK";
			FileWriter fileWriter = new FileWriter(filePath);
			//按行写文件
			for(int i=0; i<sumLabel; i++) {
				fileWriter.write("样本行数"+i+"\r\n");
				fileWriter.flush();   
				String value;
				//写数据特征值 136
				for(int j=0;j<136;j++) {
					value = String.valueOf(x.get(i).get(j)); //输出第i行 第j个特征值 
 					fileWriter.write(value+" ");
				}
				//label等级 qid
				fileWriter.write("\r\n");
				value = String.valueOf(x.get(i).get(136)); //label
				fileWriter.write(value+" ");
				value = String.valueOf(x.get(i).get(137));
				fileWriter.write(value+" ");
				fileWriter.write("\r\n");
			}
			fileWriter.close();
		} catch(Exception e) {
			e.printStackTrace();
		}
	} 
	
	/**
	 * 学习排序
	 * 主要功能计算136维权重w和划分五个等级的阈值b
	 */
	public void LearningToRank() {
		int realRank;                         //真实Label等级
		int predictRank;                      //预测Label等级
		Float[] y= new Float[RANK_LABEL+1];   //new label
		Float tao [] = new Float[RANK_LABEL+1];
		
		//初始化权重 全为0
		weight = new ArrayList<Float>();
		for(int i=0; i< RANK_CATA; i++){ //特征向量的维数
			weight.add((float) 0.0);
		}
		//初始化阈值 b[0]=b[1]=[2]=0 b[3]=正无穷大
		b=new Float[RANK_LABEL+1];
		for(int i=0; i<RANK_LABEL; i++){ //b[0] b[1] b[2]
			b[i] = (float) 0.0;
		}
		b[RANK_LABEL] = Float.POSITIVE_INFINITY; //b[3]
		
		/*
		 * 开始计算权重 
		 * 注意:迭代主要参照CSDN博客,它没有退出.同时没有损失计算,其结果差别不大
		 * 同时原论文中Loop 1...T是总行数 并没有讲述迭代
		 */
		for(int iter = 0; iter < RANK_ITER; iter++){  //总的迭代次数 RANK_ITER=1
			for(int i=0; i< RANK_NUM; i++){   //总样本数 可以设置读取txt中部分
				//测试顺序
				predictRank = 1;
				//权重*特征向量-阈值
				float sumWX = (float) 0.0;
				for(int z=0; z<46; z++) {
					sumWX += weight.get(z)*x.get(i).get(z);    
				}	
				//预测排名
				for(int r=1;r<=RANK_LABEL;r++) { //阈值数 RANK_LABEL=3
					if(sumWX-b[r]<0) {
						predictRank = r;
						break;
					}
				}
				//获取真实等级 即数据集中第一个Label数字
				realRank = Math.round(x.get(i).get(46)); //四舍五入并转整数
				if(realRank!=predictRank) {
					for(int r=1; r < RANK_LABEL; r++){//若136维数据 5个值时
						if(realRank <= r) {	  // y形如 1 1 -1 -1 -1
							y[r] = (float)-1;
						}
						else {
							y[r] = (float)1;
						}
					}
					float tao_sum = (float) 0.0;    //tau和
					for(int r=1; r < RANK_LABEL; r++) {   //三个等级
						//权重*特征向量-阈值
						if((sumWX - b[r]) * y[r] <= 0) {
							tao[r] = y[r];
						} else {
							tao[r] = (float) 0.0;
						}
						tao_sum += tao[r];	
					}
					//更新数据
					for(int z=0; z<RANK_CATA; z++) {  //136维权重
						float newWeight = weight.get(z) +tao_sum*x.get(i).get(z);
						weight.set(z, newWeight);
					}		
					for(int r=1;r < RANK_LABEL;++r) {  //5个阈值
	                        b[r] = b[r] - tao[r];	
	                }
				} //End if
				else {
					continue;
				}
			} //End 样本总数
		} //End 迭代次数
	}
	
	/**
	 * 函数 预测排序结果
	 * 主要 通过LearningToRank()函数计算的得分计算分数,再根据阈值划分等级
	 */
	public void PredictNewLabel() {
		float rightCount = 0;
		float score = (float) 0.0;
		for(int i=0; i < RANK_NUM; i++){
			int predict_r = 1;
			//权重*特征向量-阈值 (W*X-B)
			float sumWX = (float) 0.0; 
			for(int z=0; z<46; z++) {
				sumWX = sumWX + weight.get(z) * x.get(i).get(z);
			}
			for(int r=1; r<= RANK_LABEL; r++){  //5
				if(sumWX < b[r]){
					score = sumWX;
					predict_r = r;
					break;
				}
			}
			//计算正确概率
			if(predict_r == Math.round(x.get(i).get(46))) //46维数据 46-label 47-qid 0-45特征值
			{
				rightCount++;
			}
			System.out.println("predict="+predict_r+" score="+score+" real="+x.get(i).get(46));
		}
		//输出结果
		System.out.println("正确率:"+rightCount/(float)RANK_NUM);
		System.out.println("输出阈值");
		for(int i= 1;i<4;i++){
			System.out.println(b[i]+" ");
		}
	}
	
	
	/**
	 *	主函数 
	 */
	public static void main(String[] args) {
		
		String fileInput = "train.txt";
		String fileOutput = "output.txt";
		String fileRank = "rank.txt";
		//实例化
		Prank prank = new Prank();
		try {
			//第一步 读取文件并解析数据
			prank.ReadTxtFile(fileInput);
			//第二步 输出解析的基础数据
			//prank.WriteTxtFile(fileOutput);
			//第三步 学习排序训练模型
			prank.LearningToRank();
			//第四步 测试打分排序
			prank.PredictNewLabel();
		} catch (Exception e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}
	}

	/**
	 * End
	 */
}
   运行结果如下图所示,算法流程分析都很清楚,同时我采用的是下标从0开始取.b[1]和[2]两个阈值即可划分为3个不同的类,b[3]=Infinity.但是预测结果总是一个值,不知道为什么?可能算法中有些细节错误,纠结了我很长时间.如果知道希望告知.下面是采用C++实现.

    2.C++代码实现
    该部分代码参考自新浪播客:
    http://blog.sina.com.cn/s/blog_4c98b960010008xn.html
    运行结果过程如下图所示,通过train.txt数据集得到model.txt,里面存储的是46个权重.如:
    -0.052744 1.886342 1.002179 -6.400005 -1.824795 0.000000 0.000000 ..
    然后通过该模型对test.txt进行打分预测,同时计算正确率(已标注Label=预测Label).

#include <iostream>
#include <fstream>
#include <limits>
#include <iomanip>

using namespace std;

#define K 3  //排序的序数,即如排成全相关,部分相关,不相关,序数就是3
#define N 46 //特征的维数

double *w;			//权值 
int *b;				//偏置项 
int *y;
int *t;

//从文件中获得特征值 X 存储特征向量 yt 存储标签
bool getData(double *x,int &yt,ifstream &fin)	 
{
    if (fin.eof())
        return false;

    char data[1024];
    int index = 1;
    fin.getline(data,1024);
    char *p = data;
    char q[100];
    q[0] = p[0];
    q[1] = '\0';
    yt = atoi(q) + 1;								// 标签 
    p = p+8;//跳过qid:xx的冒号
    for( ; *p != '\0'; ++p)
    {
        if(*p == ':')
        {
            ++p;
            int i = 0;
            for(i=0; *p != ' '; i++, p++)
            {
                q[i] = *p;
            }
            q[i] = '\0';      
            x[index ++] = atof(q);
        }
    }
    return true;
}

//各变量进行初始化
void Initialize()
{
    w = new double[N+1];
    b = new int[K+1];
    y = new int[K+1];
    t = new int[K+1];
    int i;
    int r;
    for(i=1; i<=N;i++)
        w[i] = 0 ;
    for(r=1;r<=K-1;r++)
        b[r] = 0;
    b[K] = std::numeric_limits<int>::max();//无穷大
}

//利用Prank算法进行训练
void PrankTraining(double *x,int yt)
{
    int i;
    int r;
    double wx = 0;				//存储 W*X 的计算结果 
    for(i =1; i<=N; i++)		//计算 W*X 
        wx += w[i] * x[i];
    for(r =1; r<=K; r++)		//找到满足 W*X-b<0 的最小 r 
    {
        if(wx - b[r] <0 )
            break;
    }
    int yy = r ;				//预测值 
    if (yy == yt)				//预测正确,直接返回 
	{
		return;
	}				
    else						//预测错误,权值更新 
    {
        for(r=1; r<K; r++)
        {
            if(yt <= r)
                y[r] = -1;
            else
                y[r] = 1;
        }
        for(r=1; r<K; r++)
        {
            if ((wx-b[r])*y[r] <= 0)
            {
                t[r] = y[r];
            }
            else
                t[r] = 0;
        }
        //更新 W 和 b 
        int sumt = 0;
        for(r=1; r<K; r++)
            sumt = sumt + t[r];
        for(i=1;i<=N;i++)				//更新 W 
            w[i] = w[i] + sumt*x[i];
        for(r=1; r<K; r++)				//更新 b 
            b[r] = b[r] - t[r];
    }
}

//利用得到的model进行测试
int Pranking(double *x)
{
    int i;
    int r;
    double wx = 0;
    for(i=1; i<=N; i++)
        wx = wx + w[i] * x[i];
    for(r=1; r<=K; r++)
        if(wx - b[r] <0 )
		{
			cout<< " "<<wx;
            break;
		}
    return r;
}


int main(int argc,char **argv)
{
    int right=0,wrong=0;//排正确和错误的样本数
	//输入训练数据文件名 
	string sin_train = "train.txt";
    ifstream fin_train(sin_train.c_str());
    if(fin_train.fail())
    {
        cout << "can't open the traningsetFile!"<<endl;
        return -1;
    }
	//输入输出模型文件名 
	string sout_model = "model.txt";
	ofstream fout_model(sout_model.c_str()); 
    if(fout_model.fail())
    {
        cout << "can't open the ModelFile!"<<endl;
        return -1;
    }
	//输入测试数据文件名
	string sin_test = "test.txt";
	ifstream fin_test(sin_test.c_str()); 
    if(fin_test.fail())
    {
        cout << "can't open the testsetFile!"<<endl;
        return -1;
    }
	// 输入输出结果文件名
	string sout_result = "result.txt";
	ofstream fout_result(sout_result.c_str()); 
    if(fout_result.fail())
    {
        cout << "open resultFile  failed!"<<endl;
        return -1;
    }
    double *tr = new double[N+1];	// 特征向量 
    int yt;							// 标签 
    Initialize();					//初始化权值w和偏置项b 
    int i = 0;
    //读入训练数据进行训练得到model
    while(true)
    {
        if (getData(tr,yt,fin_train))
        {
            PrankTraining(tr,yt);//训练
        }
        else
            break;
    }
	//将得到的w和b写入文件
    char   buff[128];
    cout<<"训练出的w为:\n";
    for(i=1; i<=N; i++)						//写 w
    {
        cout<<setw(8)<<w[i]<<'\t';
        memset(buff,0,sizeof(buff));  
        sprintf(buff,"%f",w[i]);
        fout_model << buff << " ";
    }
    fout_model<<endl;
    cout<<"\n\n训练出的b为:\n";
    for(i = 1; i<K;i++)						//写 b
    {
        cout<<b[i]<<'\t';
        memset(buff,0,sizeof(buff));  
        sprintf(buff,"%d",b[i]);
        fout_model << buff << " ";
    }
	//读入测试数据进行测试得到正确率
    while(true)
    {
        if (getData(tr,yt,fin_test))
        {
            int yy = Pranking(tr);
            char p[2];
            p[0] = yy -1 + 48;
            p[1] = '\0';
            fout_result << p << endl;

            if (yy == yt)
                right ++;
            else
                wrong ++;

        }
        else
            break;
    }
    cout<<"\n\n排正确的个数为"<<right<<",错误的个数为"<<wrong<<",正确率为%"<<right*100*1.0/(right+wrong)<<endl;
	cout<<b[0]<<'\t'<<b[1]<<'\t'<<b[2];
	//释放申请的空间并关闭文件  
    delete []w;   
    delete []y;
    delete []t;
    delete []b;
    delete []tr;
    fin_train.close();
    fin_test.close();
    fout_result.close();
    fout_model.close();
	system("PAUSE");
    return 0;
}

五. 总结与问题

    最后讲述在该算法中你可能遇到的问题和我的体会:
    1.由于它是读取文件,可能文件很大(几百兆或上G).最初我设计的数组是double feature[10000][136],用来存储每行特征值,但是如果行数太大时,What can do?此时我们应该设置动态数组<List<List<Float>>>x解决.
    2.最初阅读了CSDN的Prank代码,它迭代了1万次,最后查看原文发现它并没有迭代.所以你可以参考C++那部分代码,每次只需要读取一行数据处理,并记住上一次的46维权重和阈值即可.
    3.为什么我从136维数据转变成了46维数据?
    你打开136维特征值数据时,你会发现它的值特别大,不论是Pointwise,还是Pairwise和Listwise都可能出现越界,一次内积求和可能就10的7次方数据了.但是46维数据,每个特征值都是非常小的,所以如果用136维数据,你需要对数据进行归一化处理,即数据缩小至-1到1之间.
    4.评价Pointwise、Pairwise和Listwise指标通常是MAP和NDCG@k,后面讲述基于对的学习排序和基于列的学习排序会具体介绍.
    5.你可能会发现数据集中存在vail验证集,以及交叉验证、交叉熵、梯度下降后面都会讲述.但由于相对于算法,我对开发更感兴趣,很多东西也是一知半解的.
    6.最后要求该算法到Hadoop或Spark实现并行化处理,但算法的机制是串行化.有一定的方法,但我没有实现.我们做的是一种伪并行化处理,即模型得到权重后进行并行化计算分数排序.
    最后简单附上我们的实验结果,后面的算法实验结果是基于MAP和NDCG@k



   希望文章对大家有所帮助!主要是现在看到LTR很多都是理论介绍,论文也没有具体代码,而开源的RankLib有点看不懂,所以提出了自己的认识及代码执行.我也是才接触这个一个月,可能过程中存在错误或不足之处,欢迎提出建议~同时感谢一起奋斗的伙伴,尤其是Pu哥.
       (By:Eastmount 2015-01-28 夜5点半    http://blog.csdn.net/eastmount/


查看评论

Learning to Rank入门小结 + 漫谈

Table of Contents 1 前言2 LTR流程3 训练数据的获取4 特征抽取 3.1 人工标注3.2 搜索日志3.3 公共数据集 5 模型训练 5.1 ...
  • kunlong0909
  • kunlong0909
  • 2013-11-18 15:56:04
  • 7506

主动排序学习算法之PRank

PRank算法摘自梁斌博客         PRank是一个pointwise的监督学习排序的方法,一般被用作baseline。我看了下论文,然后动手写了个小实验,进行了理解。 ...
  • piaoxuefengqi
  • piaoxuefengqi
  • 2013-12-25 10:15:04
  • 2165

PRank的学习和理解

PRank是一个pointwise的监督学习排序的方法,一般被用作baseline。我看了下论文,然后动手写了个小实验,进行了理解。          其基本需求是:对于每个对象,会有不同...
  • pennyliang
  • pennyliang
  • 2013-12-15 13:35:29
  • 7792

排序学习简介

译排序学习简介,翻译自李航老师的《A Short Introduction to Learning to Rank》
  • clheang
  • clheang
  • 2016-06-15 20:42:30
  • 5684

机器学习排序之Learning to Rank简单介绍

 机器学习排序之Learning to Rank简单介绍 标签: Learning to Rank学习排序PointwisePairwiseListwise 2015-01-0...
  • starzhou
  • starzhou
  • 2016-05-17 17:55:41
  • 5484

160824--推荐系统中的排序学习

1、推荐系统 2、排序学习 2.1排序算法分类 2.2存在的问题 2.3解决方案 3、总结...
  • mdxiaobai
  • mdxiaobai
  • 2016-08-24 09:10:01
  • 805

学习排序算法简介

学习排序算法简介 学习排序(Learning to Rank, LTR)是一类基于机器学习方法的排序算法。 传统经典的模型,例如基于TFIDF特征的VSM模型,很难融入多种...
  • puqutogether
  • puqutogether
  • 2014-12-24 09:35:27
  • 2449

排序算法学习(1)

1、       在外部排序时,利用选择树方法在能在能容纳m个记录的内存缓冲区中产生的初始归并段的平均长度为2m个记录。(正确。归并排序是将两个长度相当序列合并成一个序列,初始序列长度为m,那么合并之...
  • wangdd_199326
  • wangdd_199326
  • 2017-05-20 15:04:52
  • 359

机器学习之排序学习综述

 1   排序学习的简介 Web Search 的历史经历了传统的 “text retrieval” 到 “基于link analysis的搜索引擎”,目前,由于机器学习和数据挖掘的技术不断成...
  • linux_lihuafeng
  • linux_lihuafeng
  • 2014-07-25 08:42:09
  • 1416

北京

 来到北京有几天了,感觉自己太渺小了。走在大街上虽然有很多的人但是还是会感到孤单,会想起很多的事情。包括那些似乎己经遗忘的事。我知道自己已经不是一个可以随便伤感的人了但是还是忍不住去伤感。这对于一个男...
  • cutworm
  • cutworm
  • 2008-08-22 10:22:00
  • 105
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 253万+
    积分: 2万+
    排名: 397
    牛人博客
    博客专栏
    最新评论