自动驾驶---Behavior Planning之EUDM

本文介绍了自动驾驶行为规划中的EUDM算法,该算法结合POMDP和MPDM的思想,通过条件聚焦剪枝(CFB)处理不确定性,提高了决策效率。EUDM在策略树中结合专家知识进行剪枝,以实现安全、高效的驾驶决策,适用于实时性要求高的自动驾驶系统。
摘要由CSDN通过智能技术生成

1 背景

        在前面的博客中,为读者朋友们阐述了自动驾驶Planning模块基于MCTS行为规划的文章《自动驾驶---Behavior Planning之MCTS》,博客中引用的论文的主要思想是以蒙特卡洛树来实现行为规划。今天,我们继续探寻另一种行为规划的策略,主角依然是香港科技大学。

        熟悉的读者大概有些印象,笔者之前也写过一篇香港科技大学沈劭劼教授(同时是大疆车载负责人)团队的Motion Planning的内容《自动驾驶---Motion Planning之构建SLT Driving Corridor》,这次主要研究其使用到的行为规划算法,其中有些细节和上面的MCTS算法有相似之处。

2 内容介绍

        在正式介绍论文正式内容之前,先熟悉论文中提到的前辈们的工作。

2.1 相关内容介绍<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能汽车人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值