cuda 矩阵乘法,从最容易理解到算得最快(第二版源码-tile机制+共享内存)

本文探讨了如何通过CUDA中的tiling技术优化矩阵乘法,将全局内存访问次数减少到原来的1/64。通过将矩阵划分为64x64的tile,每个GPU block负责计算C的一个分块,从而减少了内存访问次数,提高了计算效率。实验以4096x4096的矩阵为例,展示了tiling方法在并行计算中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下面我们仅仅引入tiling方法,在共享内存中进行分块矩阵的乘法运算。先分析一下能够减少多少次对全局存储区的访问。

当M=N=K=4096时,用第一版的代码,忽略cache的缓存时,需要从全局存储区读取2*(4096^3)个float变量。

为了让思路简单一点,我们假设A、B和C三个矩阵都是4096*4096的方阵。按照64*64大小的tile来分块,于是ABC都可以变成64x64的以64*64的tile为元素的分块矩阵。按照分块矩阵的乘法规则等同于普通矩阵的乘法规则。C的每个分块,需要64个分块矩阵的乘法操作,并将结果累加。

C的一个分块需要多少次全局内存的访问呢?重复64次,每次先分别取A和B的64*64个元素进共享内存。每个分块需要读取64*(64*64+64*64)个全局内存中的float变量;C总共有64x64个分块元素。所以总共需要读取从A、B读取     (64x64)*64*(64*64+64*64)=4096*64*2*4096=128*4906^2次个float变量。

[2*(4096^3) ] 除以 [128*4906^2],结果为64倍。也就是说,使用了tile机制,将A、B的数据读取到共享内存再计算矩阵乘法,对全局内存的访问量可以减少为原来的1/64。这将会减少程序的运行时间。让我们把这个思路实现出来,并测试对比一下运行时间。

gridDim.x=流处理器的个数,每个block一次负责一个64*64的C的分块元素的计算;从左向右,从上往下,依次迭代负责。为思考的简单起见,假设C的M和N都是64的倍数。不为倍数的时候,差不多,细节后面再补充。

### CUDA 矩阵乘法性能优化技术 在讨论如何通过 CUDA 实现高效的矩阵乘法时,可以从多个方面入手来提升其性能。以下是几个重要的优化技术和方法: #### 1. **L2 Cache 和 Matrix Scale** 当矩阵大小较小以至于可以完全存储于 L2 缓存中时,DRAM 的访问次数会显著减少[^1]。这意味着如果能够合理设计算法使得数据尽可能多地驻留在高速缓存中,则可大幅降低内存带宽瓶颈的影响。 #### 2. **Z 字形排列与 Thread 数据分割** 李少侠在其代码实现中采用了 Z 字形的数据布局策略,并将单个线程负责的小型矩阵进一步划分为四个更小的部分来进行处理[^2]。这种做法不仅有助于提高广播效率(broadcast performance),还允许保持原有计算逻辑不变仅需调整索引映射关系即可完成转换。尽管具体原因尚不明确但从实验结果来看确实有效提升了执行速度。 #### 3. **Loop Reordering and Locality Optimization** 针对 CPU 上常见的矩阵乘法优化经验表明改变循环迭代次序同样适用于 GPU 场景下以改善空间/时间局部性特性从而增强Cache利用率并减少不必要的全局内存加载开销[^3]。例如采用向量外积形式并通过寄存器暂存中间变量的方式避免多次重复读写外部存储单元。 #### 4. **Im2Col Transformation & Convolution Representation** 对于某些特定应用场景比如深度学习框架内的卷积层运算而言,可以通过先将输入特征图转化为二维列缓冲区(im2col transformation),然后再应用标准GEMM(general matrix multiply)核函数达到加速目的[^4]。此过程本质上是对原生三维张量操作的一种重构表达以便更好地发挥现代硬件架构优势。 #### 5. **Shared Memory Utilization Across Multiple Outputs per Thread** 考虑让每一个独立运行单位不仅仅专注于单一输出位置上的累加贡献而是扩展至覆盖更多目标区域的同时利用共享内存资源进行协作式预取和累积更新动作[^5]。这种方法能够在一定程度上缓解因频繁跨块通信所引发的竞争冲突现象进而促进整体吞吐能力的增长。 ```cpp __global__ void matMulKernel(float *d_C, float *d_A, float *d_B, int wA, int wB){ __shared__ float s_A[TILE_WIDTH][TILE_WIDTH]; __shared__ float s_B[TILE_WIDTH][TILE_WIDTH]; unsigned int bx = blockIdx.x; unsigned int by = blockIdx.y; unsigned int tx = threadIdx.x; unsigned int ty = threadIdx.y; unsigned int Row = by*TILE_WIDTH + ty; unsigned int Col = bx*TILE_WIDTH + tx; float Cvalue = 0; for(int m=0; m<(wA-1)/TILE_WIDTH+1 ; ++m){ if(Row<wA && (m*TILE_WIDTH+tx)<wB) s_A[ty][tx] = d_A[Row*wA+m*TILE_WIDTH+tx]; else s_A[ty][tx] = 0.0f; if(Col<wB && (m*TILE_WIDTH+ty)<wA) s_B[ty][tx] = d_B[(m*TILE_WIDTH+ty)*wB+Col]; else s_B[ty][tx] = 0.0f; __syncthreads(); for(unsigned int k=0;k<TILE_WIDTH;++k){ Cvalue += s_A[ty][k]*s_B[k][tx]; } __syncthreads(); } if(Row<wA && Col<wB)d_C[Row*wB+Col]=Cvalue; } ``` 上述代码片段展示了如何有效地运用共享内存机制以及tile-based approach来组织数据传输路径并小化延迟影响。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值