AI和大模型技术在网络脆弱性扫描领域的最新进展与未来发展趋势

1. 技术实现
1.1 基于AI的漏洞扫描

自动化漏洞检测:

  • 深度学习和机器学习模型:通过训练深度学习和机器学习模型,AI可以自动检测网络中的漏洞。这些模型可以从大量的历史数据中学习,识别出潜在的漏洞模式。例如,使用卷积神经网络(CNN)和循环神经网络(RNN)可以有效识别网络流量中的异常行为。
  • 自然语言处理(NLP):利用大型语言模型(LLMs)解析和理解安全报告、日志文件等文本数据,快速发现漏洞描述和攻击向量。这有助于安全团队更快地响应和处理新出现的威胁。
  • 图像识别:AI可以通过图像识别技术检测网络设备和系统的物理状态,例如摄像头监控下的异常行为。这对于物理安全和物联网设备的安全尤为重要。

示例工具和技术:

  • Tenable AI Aware:Tenable推出的一款AI驱动的安全解决方案,可以提供对AI应用程序、库和插件的暴露洞察,帮助组织发现和关闭AI风险。
  • Optiv’s AI Model Vulnerability Scan:Optiv提供的AI模型漏洞扫描工具,可以帮助组织避免被篡改的模型,建立可靠的软件安全供应链。
1.2 漏洞管理和风险评估

加速漏洞管理周期:

  • 快速检测和
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值