plantCARE的结果可视化(热图)

本文介绍了如何使用Excel处理Plantcare的结果,将其转换为矩阵,然后利用R语言中的ggplot2包绘制热图展示基因启动子上的顺式作用元件。作者详细展示了数据预处理、长格式转换和热图制作的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用excel将plantcare的结果转成矩阵了。参考链接:Plantcare_启动子预测结果_快速筛选指定基因启动子上的顺式作用元件个数_坐大巴车晕车啊的博客-CSDN博客

接下来用R包ggplot2画热图就好了。

参考链接:

R语言中ggplot2绘制热图,美化热图流程 - 知乎

R语言ggplot2画带有空白格的热图简单小例子-腾讯云开发者社区-腾讯云 (tencent.com)

跟着Nature microbiology学作图:R语言ggplot2热图展示离散数据 - 知乎

#加载不用说了
library(ggplot2)
library(reshape2)
#提取某几列的包
library(dplyr)

#check.names=FALSE防止将列名-变成.
data<- read.csv("plantCARE矩阵图.csv",header=TRUE,row.names=1, check.names=FALSE)
#因为使用的excel语言没有呈现0值所以将NA换成0
data[is.na(data)]=0
data
light <-select(data,'ACA-motif','AE-box','Box II','CAG-motif','DRE','GA-motif','Gap-box')
light


> light
          ACA-motif AE-box Box II CAG-motif DRE GA-motif Gap-box
001         0      0      0         0   0        0       1
002         0      0      0         0   0        0       0
003         0      1      0         0   0        1       0




#将宽数据类型转为长数据类型
light$id <- rownames(light) #新建一列(ID),内容为数据的行名
light_m <- melt(light,id.vars=c("id")) #将原来的数据转化成长数据格式,并以ID列为主因素
head(light_m,5) #查看转换后的结果,该数据将用于后续的流程



> head(light_m,5)
         id  variable value
1 001 ACA-motif     0
2 002 ACA-motif     0
3 003 ACA-motif     0
4 004 ACA-motif     0
5 005 ACA-motif     0

开始画图


p <- ggplot(light_m,aes(x=variable,y=id))+ #初始化,读入数据,设置x轴和y轴
    geom_tile(aes(fill=value),color="black")+ #加网格线
    scale_fill_gradient(low = "white", high = "red")+#设置填充颜色
    geom_text(aes(label=value))+#设置填充项为value值,在每一格中添加数字
    theme(panel.background = element_blank())+
  #将X轴放到上面
    scale_x_discrete(position = "top")+
    theme(panel.background = element_blank(),
        axis.title = element_blank(),
        axis.ticks = element_blank(),
        axis.text.x.top = element_text(angle = 90,
                                       hjust = 0,
                                       vjust= 0.5),
        plot.title = element_text(hjust=0.5),
        legend.position = "none")+
    labs(title = "Light response")


p 

结果就类似这种(网图)

#前面用同样的方式画出别的然后合并在一起
p+p1+
  plot_layout(guides = "collect")+
  # 设置为左边占7份,右边占1份平分宽度,可以调整两张图之间的水平间隔
  plot_layout(ncol = 2, widths = c(7, 1)) + 
  #设置图例在下方,不过我的不打算设置图例
  plot_annotation(theme = theme(legend.position = "bottom",
                                legend.box = "vertical"))

就一拼接缝合怪,大佬都在链接里。学习记录。

Plantcare教程是一个关于植物护理的教学材料,旨在帮助人们学习如何正确照顾植物。 首先,Plantcare教程会介绍不同种类的植物,包括花卉、室内植物和果树等。对于每种植物,教程会提供种植的理想条件,比如阳光、水分和温度要求等。通过了解每种植物的特性,人们可以更好地选择适合自己的植物,并给予它们正确的照顾。 其次,Plantcare教程将讲解植物的种植技术。这包括土壤的准备、种子的播种、植物的移栽和修剪等。教程将提供清晰的步骤和说明,帮助人们正确地完成这些种植过程。种植技术的正确运用可以有效地促进植物的生长和发展。 在植物护理方面,Plantcare教程将涵盖水分和养分的供应。教程将解释植物对水分的需求,并教会人们如何正确浇水和查水表。此外,教程还会介绍植物的养分需求,并提供正确的施肥方法和时间。合理的水分和养分供应是保持植物健康生长的关键。 最后,Plantcare教程还会提供一些建议和技巧,帮助人们解决植物护理中遇到的问题。比如,如何防止病虫害的发生,如何处理植物叶子的黄化等。这些经验分享可以帮助人们更好地应对各种植物护理的挑战。 总之,Plantcare教程是一个全面的植物护理指南。通过学习这个教程,人们可以更加了解植物的需求和种植技术,从而有效地照顾自己的植物。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值