3、机器人认知与地图构建技术解析

机器人认知与地图构建技术解析

1. 机器学习概述

机器学习旨在选择一种能适应广泛训练数据和函数状态的替代表示方式。为学习目标函数,需合适的训练示例集,如机器人导航中,一组传感器读数和机器人运动就构成学习的训练模式。从学习者的训练经验中导出训练示例后,要调整权重以适配这些示例。

机器学习可看作是在大量可能假设空间中搜索,以确定最符合观测数据和学习者先验知识的假设。其在多个领域展现出实用性:
- 人类缺乏足够知识开发有效算法的领域,如人脸识别。
- 程序需动态适应变化条件的领域,如在供应库存变化下控制制造过程。
- 数据挖掘问题,大型数据库中可能存在可自动发现的有价值隐含规律。

1.1 机器学习分类

机器学习大致可分为以下几类:
| 类型 | 说明 |
| ---- | ---- |
| 监督学习 | 需要训练者提供输入 - 输出训练实例,学习系统通过算法调整参数,从给定输入模式生成期望输出模式。归纳学习是监督学习的特殊类型,给定一组 {xi, f(xi)} 对,确定假设 h(xi) 使 h(xi) ≈ f(xi),∀i。 |
| 无监督学习 | 无需训练者,学习者通过对环境实验构建概念。因训练实例的目标或输出未知,环境无法衡量学习者活动状态。例如孩子多次扔球到墙上后学会“反弹原理”。智能系统应能从大量数据中快速学习,实时在线适应新数据,具备数据存储和检索能力,且能通过与用户和环境的交互学习改进,但目前进展有限。 |
| 强化学习 | 学习者根据环境反馈信号的奖励或惩罚状态调整参数。学习自动机采用最简单的强化学习形式,目前基于反馈信号状态开发了 Q 学习和时间差分学习。 |

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值