大模型 RAG 面试篇

本文讨论了LLMs中的模型幻觉问题及其解决方法,介绍了基于LLM和向量库的文档对话的核心技术,包括embedding、向量匹配和prompt模板构建。着重讲解了利用余弦算法寻找最匹配的知识库片段以生成回答的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.LLMs 存在模型幻觉问题,请问如何处理?

 检索+LLM。

先用问题在领域数据库里检索到候选答案,再用LLM对答案进行加工。

2.基于LLM+向量库的文档对话 思路是怎么样?
  1. 加载文件
  2. 读取文本
  3. 文本分割
  4. 文本向量化
  5. 问句向量化
  6. 在文本向量中匹配出与问句向量最相似的top k个
  7. 匹配出的文本作为上下文和问题一起添加到 prompt 中
  8. 提交给 LLM 生成回答
3.基于LLM+向量库的文档对话 核心技术是什么?
  1. 基于LLM+向量库的文档对话 核心技术:embedding
  2. 思路:将用户知识库内容经过 embedding 存入向量知识库,然后用户每一次提问也会经过 embedding,利用向量相关性算法(例如余弦算法)找到最匹配的几个知识库片段,将这些知识库片段作为上下文,与用户问题一起作为 promt 提交给 LLM 回答
4.基于LLM+向量库的文档对话 prompt 模板 如何构建?

已知信息:

{context}

根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。

问题是:{question}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值