面板数据分析步骤及流程-R语言

面板数据

面板数据(Panel Data),也成平行数据,具有时间序列和截面两个维度,整个表格排列起来像是一个面板。
面板数据举例:
这里写图片描述

模型说明及分析步骤

1、首先确定解释变量和因变量;
2、R语言操作数据格式,部分截图如下,这里以index3为因变量,index1与index2为解释变量:
这里写图片描述

##加载相关包
install.packages("mice")##缺失值处理
install.packages("plm")
install.packages("MSBVAR")
library(plm)
library(MSBVAR)
library(tseries)
library(xts)
library(mice)
data<-read.csv("F://分类别//rankdata.csv",header=T,as.is=T)##读取数据

2、单位根检验:数据平稳性
为避免伪回归,确保结果的有效性,需对数据进行平稳性判断。何为平稳,一般认为时间序列提出时间趋势和不变均值(截距)后,剩余序列为白噪声序列即零均值、同方差。常用的单位根检验的办法有LLC检验和不同单位根的Fisher-ADF检验,若两种检验均拒绝存在单位根的原假设则认为序列为平稳的,反之不平稳(对于水平序列,若非平稳,则对序列进行一阶差分,再进行后续检验,若仍存在单位根,则继续进行高阶差分,直至平稳,I(0)即为零阶单整,I(N)为N阶单整)。

##单位根检验
tlist1<-xts(data$index1,as.Date(data$updatetime))
adf.test(tlist1)
tlist2<-xts(data$index2,as.Date(data$updatetime))
adf.test(tlist2)

3、协整检验/模型修正
单位根检验之后,变量间是同阶单整,可进行协整检验,协整检验是用来考察变量间的长期均衡关系的方法。若通过协整检验,则说明变量间存在长期稳定的均衡关系,方程回归残差是平稳的,可进行回归。
格兰杰因果检验:前提是变量间同阶协整,通过条件概率用以判断变量间因果关系。

##格兰杰因果检验
granger.test(tsdata,p=2)

4、模型选择
面板数据模型的基本形式
这里写图片描述
也可写成:
这里写图片描述
其中:
这里写图片描述
这里写图片描述
这里写图片描述

对于平衡的面板数据,即在每一个截面单元上具有相同个数的观测值,模型样本观测数据的总数等于NT。
当N=1且T很大时,就是所熟悉的时间序列数据;当T=1而N很大时,就只有截面数据。

  • 模型选择一般有三种形式
    (1)无个体影响的不变系数模型(混合估计模型):ai=aj=a,bi=bj=b
    这里写图片描述
    即模型在横截面上无个体影响、无结构变化,可将模型简单地视为是横截面数据堆积的模型。这种模型与一般的回归模型无本质区别,只要随机扰动项服从经典基本假设条件,就可以采用OLS法进行估计(共有k+1个参数需要估计),该模型也被称为联合回归模型(pooled regression model)。
    (2)变截距模型(固定效用模型):ai≠aj,bi=bj=b
    这里写图片描述
    即模型在横截面上存在个体影响,不存在结构性的变化,即解释变量的结构参数在不同横截面上是相同的,不同的只是截距项,个体影响可以用截距项ai (i=1,2,…,N)的差别来说明,故通常把它称为变截距模型。
    (3)变系数模型(随机效应模型):ai≠aj,bi≠bj
    这里写图片描述
    即模型在横截面上存在个体影响,又存在结构变化,即在允许个体影响由变化的截距项ai (i=1,2,…,N)来说明的同时还允许系数向量bi (i=1,2,…,N)依个体成员的不同而变化,用以说明个体成员之间的结构变化。我们称该模型为变系数模型。
  • 选择合适的面板模型
    需要检验被解释变量yit的参数ai和bi是否对所有个体样本点和时间都是常数,即检验样本数据究竟属于上述3种情况的哪一种面板数据模型形式,从而避免模型设定的偏差,改进参数估计的有效性。
    这里写图片描述
    如果接受假设H2,则可以认为样本数据符合不变截距、不变系数模型。如果拒绝假设H2,则需检验假设H1。如果接受H1,则认为样本数据符合变截距、不变系数模型;反之,则认为样本数据符合变系数模型。
  • F检验
    具体计算过程略,见参考ppt。
    这里写图片描述
    这里写图片描述
    其中下标1,s1指代随机效应模型的残差平方和,s2指代固定效用模型残差平方和,s3指代混合估计模型的残差平方和;
    若F2统计量的值小于给定显著水平下的相应临界值,即F2小于Fa,则接受H2,认为样本数据符合混合效应模型;反之,则继续检验假设H1;
    若F1统计量的值小于给定显著水平下的相应临界值,即F1小于Fa,则接受H1,认为样本数据符合固定效应模型;反之,则认为样本数据符合随机效应模型;
  • 随机效应模型
    (1)1.LM检验。Breush和Pagan于1980年提出R 检验方法。
    其检验原假设和备择假设:
    这里写图片描述
    如果不否定原假设,就意味着没有随机效应,应当采用固定效应模型。
    (2). 豪斯曼(Hausman)检验。William H Greene于1997年提出了一种检验方法,称为豪斯曼(Hausman)检验。
    这里写图片描述
    若统计量大于给定显著水平下临界值,p值小于给定显著水平,则存在个体固定效应,应建立个体固定效应模型。
form<- index3~index1+ index2
rankData<-plm.data(data,index=c("IPname","updatetime"))#转化为面板数据
pool <- plm(form,data=rankData,model="pooling")#混合模型
pooltest(form,data=rankData,effect="individual",model="within")#检验个体间是否有差异
pooltest(form,data=rankData,effect="time",model="within")#检验不同时间是否有差异
wi<-plm(form,data=rankData,effect="twoways",model="within")#存在两种效应的固定效应模型
pooltest(pool,wi)#F检验判断混合模型与固定效应模型比较
phtest(form,data=rankData)##Hausman检验判断应该采用何种模型,随机效应模型检验
pbgtest(form,data=rankData,model="within")#LM检验,随机效应模型检验
#检验是否存在序列相关
pwartest(form,data=rankData)#Wooldridge检验(自相关)小于0.05存在序列相关
summary(wi)##查看拟合模型信息
fixef(wi,effect="time")#不同时间对因变量的影响程度的系数估计值
inter<-fixef(wi,effect="individual")#不同个体对因变量的影响程度的截距估计值

##根据模型参数,进行预测;

百度文库中下载的参考ppt:
http://pan.baidu.com/s/1qXHVGde

注:有些地方,尤其R代码部分有些乱,需根据实际数据情况进行选择,函数的参数设置并未完全吃透,还需要继续学习,如有不对的地方,再改正,目前的理解是这样了,在本次数据场景中,实际数据应用中预测效果不是很好,误差稍大,这次未采用,以后遇到可以再尝试。

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页