自动控制原理学习笔记(四)

第四章 控制系统的稳定性及稳态误差

4.1 基于传递函数的稳定性分析

4.1.1 连续系统稳定性及劳斯判据(书3.8~3.9)

稳定性的概念:单位冲激响应的稳态值为0    ⟺    \iff lim ⁡ t → 0 k ( t ) = 0 \lim\limits_{t\to0}k(t)=0 t0limk(t)=0
Φ ( s ) = k ∏ i = 1 m ( s − z i ) ∏ j = 1 q ( s − s j ) ∏ k = 1 r ( s 2 + 2 ζ k ω n k s + ω n k 2 ) k ( t ) = ∑ j = 1 q A j e s j t + ∑ k = 1 r B k e − ζ k ω n k t c o s ( ω n k 1 − ζ k 2 t ) + C k e k − ζ k ω n k t s i n ( ω n k 1 − ζ k 2 t ) \Phi(s)=\frac{k\prod\limits^{m}_{i=1}(s-z_i)}{\prod\limits_{j=1}^q(s-s_j)\prod\limits_{k=1}^{r}(s^2+2\zeta_k\omega_{nk}s+\omega_{nk}^2)}\\ k(t)=\sum_{j=1}^qA_je^{s_jt}+\sum_{k=1}^rB_ke^{-\zeta_k\omega_{nk}t}cos(\omega_{nk}\sqrt{1-\zeta_k^2}t)+C_ke_k^{-\zeta_k\omega_{nk}t}sin(\omega_{nk}\sqrt{1-\zeta_k^2}t) Φ(s)=j=1q(ssj)k=1r(s2+2ζkωnks+ωnk2)ki=1m(szi)k(t)=j=1qAjesjt+k=1rBkeζkωnktcos(ωnk1ζk2 t)+Ckekζkωnktsin(ωnk1ζk2 t)

  • 系统的稳定性是系统的固有特性,仅有结构参数有关
  • 由系统闭环传递函数看,稳定与否仅取决于极点的分布,与零点分布无关。
  • 零点影响系统的动态特性(影响上述的 A j , B k , C k A_j,B_k,C_k Aj,Bk,Ck),但不影响稳定性。
  • 闭环系统的稳定性与开环是否稳定无关。
  • **临界稳定:**闭环极点有一个或一个以上具有零实部(位于虚轴上),其余在左半平面。也属于不稳定
线性定常系统稳定的充要条件

闭环系统特征方程的根全部具有负实部,即闭环传递函数的极点全部严格在S平面的左半平面。

劳斯判据
  • 闭环系统特征方程:

  • D ( s ) = a n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 D(s)=a_ns_n+a_{n-1}s_{n-1}+\cdots+a_1s+a_0 D(s)=ansn+an1sn1++a1s+a0

    稳定的必要条件:系数 a i a_i ai全部为正(或全部为负),不缺项

劳斯表

在这里插入图片描述

结论

系统稳定    ⟺    \iff 劳斯表第一列系数全部为正

而且劳斯表第一列元素符号改变的次数=正实部根的个数

remark

  • 劳斯表某行同乘或同除以一个正数,结果不变。

  • 特殊情况①某一行的第一个元素为0

    则用一个很小的正数 ϵ \epsilon ϵ代替0,继续计算劳斯表再令 ϵ → 0 \epsilon \rightarrow 0 ϵ0,检验劳斯表第一列元素符号的变化。

  • 特殊情况②出现全零行

    用上一行构造辅助多项式,对辅助多项式求导,用得到的系数代替全零行,继续算完劳斯表。检验劳斯表第一列元素符号的变化。

    辅助方程的根,也是系统特征方程的根。

  • 出现全零行时,系统可能出现一对纯虚根;或一对实部相反的实根;或两对实部符号相异、虚部相同的复根。

特殊题型
  • 第17个ppt例8(开环增益)
  • 书P121例3.9.3
  • 第17个ppt例9(确定使全部极点位于 s = − k s=-k s=k之左,参数所需满足的条件 → \rightarrow 平移变换)
4.1.2 离散系统稳定性定义及劳斯判据(书6.7)

第18次ppt

s平面到z平面的映射关系

z = e s T s = σ + j ω z = e σ T e j ω T ⟹ ∣ z ∣ = e σ T , ∠ z = ω T s 在 复 域 左 半 平 面    ⟺    σ < 0    ⟺    ∣ z ∣ < 1 , z 在 单 位 圆 内 z=e^{sT}\\ s=\sigma+j\omega\\ z=e^{\sigma T}e^{j\omega T} \Longrightarrow |z|=e^{\sigma T},\angle z=\omega T\\ s在复域左半平面\iff\sigma<0\iff |z|<1,z在单位圆内 z=esTs=σ+jωz=eσTejωTz=eσT,z=ωTsσ<0z<1,z

线性离散系统稳定的充要条件
  • 定理:
    • 线性离散系统得全部特征根 z i z_i zi 都分布在z平面得单位圆之内。
Routh稳定判断
w变换

w = z + 1 z − 1 z = w + 1 w − 1 z = x + j y w = u + j v w=\frac{z+1}{z-1}\\ z=\frac{w+1}{w-1}\\ z=x+\mathrm jy\\ w=u+\mathrm jv w=z1z+1z=w1w+1z=x+jyw=u+jv

  • 线性可逆变换

  • 性质:

  • 可 推 得 u = x 2 + y 2 − 1 ( x − 1 ) 2 + y 2 可推得u=\dfrac{x^2+y^2-1}{(x-1)^2+y^2} u=(x1)2+y2x2+y21

    • ∣ z ∣ = x 2 + y 2 = 1 |z|=\sqrt{x^2+y^2}=1 z=x2+y2 =1 时, u = 0 u=0 u=0
    • ∣ z ∣ = x 2 + y 2 > 1 |z|=\sqrt{x^2+y^2}>1 z=x2+y2 >1 时, u > 0 u>0 u>0
    • ∣ z ∣ = x 2 + y 2 < 1 |z|=\sqrt{x^2+y^2}<1 z=x2+y2 <1 时, u < 0 u<0 u<0
  • 特征多项式经w变换后,直接利用Routh 稳定判据判断系统稳定性

4.2 控制系统的稳态误差分析

稳态误差分析

  • 前提:系统存在稳态

  • 只考虑原理性误差,不考虑非线性因素引起的误差

误差与稳态误差
误差(期望输出与实际输出之差)
  • 期望输出与实际输出之差
    e ( t ) ≜ y r ( t ) − y ( t ) e(t)\triangleq y_r(t)-y(t) e(t)yr(t)y(t)

  • 负反馈系统设计中,一般希望反馈信号与输入信号一致:
    希 望 反 馈 信 号 b r ( t ) = r ( t ) ,   B r ( s ) = R ( s ) 误 差 E ( s ) = 1 H ( s ) [ R ( s ) − B ( s ) ] 希望反馈信号b_r(t)=r(t),\ B_r(s)=R(s)\\ 误差E(s)=\dfrac{1}{H(s)}[R(s)-B(s)] br(t)=r(t), Br(s)=R(s)E(s)=H(s)1[R(s)B(s)]

  • 单位反馈下,稳态误差是***偏差(输入减去反馈)***信号的稳态值: e s s = lim ⁡ t → ∞ ε ( t ) e_{ss}=\lim_{t\rightarrow\infty}\varepsilon(t) ess=limtε(t)
  • 偏差 ε ( s ) = R ( s ) − B ( s ) \varepsilon(s)=R(s)-B(s) ε(s)=R(s)B(s)
稳态误差
  • 静态误差: e s s = lim ⁡ t → ∞ e ( t ) = e ( ∞ ) e_{ss}=\lim\limits_{t\rightarrow\infty}e(t)=e(\infty) ess=tlime(t)=e()
  • 动态误差:误差中的稳态分量
终值定理求稳态误差
  • e s s = lim ⁡ s → 0 s E ( s ) e_{ss}=\lim\limits_{s\rightarrow0}sE(s) ess=s0limsE(s) ,拉普拉斯变换终值定理

e s s = lim ⁡ s → 0 s [ Φ e ( s ) R ( s ) + Φ f ( s ) F ( s ) ] 不 考 虑 扰 动 产 生 的 误 差 时 , e s s = lim ⁡ s → 0 s R ( s ) 1 + G ( s ) H ( s ) e_{ss}=\lim_{s\rightarrow0}s[\Phi_e(s)R(s)+\Phi_f(s)F(s)]\\ 不考虑扰动产生的误差时,e_{ss}=\lim_{s\rightarrow0}\frac{sR(s)}{1+G(s)H(s)} ess=s0lims[Φe(s)R(s)+Φf(s)F(s)]ess=s0lim1+G(s)H(s)sR(s)

  • 终值定理应用条件:极点都位于左半平面(系统稳定)

  • 此法适用于任何情况

型别(无差度)

G ( s ) H ( s ) = K s v ∏ i = 1 m 1 ( τ i s + 1 ) ∏ k = 1 m 2 ( τ k 2 s 2 + 2 ζ k τ k s + 1 ) ∏ j = 1 n 1 ( T j s + 1 ) ∏ l = 1 n 2 ( T l 2 s 2 + 2 ζ l τ l s + 1 ) G(s)H(s)=\dfrac{K}{s^v}\dfrac{\prod\limits^{m_1}_{i=1}(\tau_is+1)\prod\limits_{k=1}^{m_2}(\tau_k^2s^2+2\zeta_k\tau_ks+1)}{\prod\limits^{n_1}_{j=1}(T_js+1)\prod\limits_{l=1}^{n_2}(T_l^2s^2+2\zeta_l\tau_ls+1)}\\ G(s)H(s)=svKj=1n1(Tjs+1)l=1n2(Tl2s2+2ζlτls+1)i=1m1(τis+1)k=1m2(τk2s2+2ζkτks+1)

  • 开环传递函数(频率法形式)中,串联积分环节的个数
  • 偏差闭环传递函数 Φ e ( s ) \varPhi_e(s) Φe(s) 中,分子中 s s s 因子的阶数
  • 以上两种定义数学等价
影响稳态误差的因素
  1. 输入信号r(t)的形式
  2. 开环放大倍数K
  3. 开环传递函数中积分环节的个数(型别)
静态误差系数法求给定输入下的稳态误差
阶跃输入
  • 静态位置误差系数

K p = lim ⁡ s → 0 G ( s ) H ( s ) = { K v = 0 ∞ v ≥ 1 K_p=\lim_{s\rightarrow0}G(s)H(s)\\ =\begin{cases} K&&v=0\\ \infty&&v\ge1 \end{cases} Kp=s0limG(s)H(s)={Kv=0v1

  • 稳态误差

e s s = { A 1 + K p , v = 0 0 , v ≥ 1 e_{ss}=\begin{cases} \dfrac{A}{1+K_p}&,&v=0\\ 0&,&v\ge1\end{cases} ess=1+KpA0,,v=0v1

斜坡输入
  • 静态速度误差系数

K v = lim ⁡ s → 0 s G ( s ) H ( s ) = { 0 , v = 0 K , v = 1 ∞ , v ≥ 2 K_v=\lim_{s\rightarrow0}sG(s)H(s)\\ =\begin{cases} 0,v=0\\ K,v=1\\ \infty,v\ge2\end{cases} Kv=s0limsG(s)H(s)=0,v=0K,v=1,v2

  • 稳态误差

e s s = A K v e_{ss}=\frac{A}{K_v} ess=KvA

加速度输入
  • 静态加速度误差系数

K a = lim ⁡ s → 0 s 2 G ( s ) H ( s ) = { 0 , v ≤ 1 K , v = 2 ∞ , v ≥ 3 K_a=\lim_{s\rightarrow0}s^2G(s)H(s)\\ =\begin{cases} 0,v\le1\\ K,v=2\\ \infty,v\ge3 \end{cases} Ka=s0lims2G(s)H(s)=0,v1K,v=2,v3

  • 稳态误差

e s s = A K a e_{ss}=\frac{A}{K_a} ess=KaA

各输入汇总
A ⋅ 1 ( t ) A\cdot1(t) A1(t) A t At At A t 2 / 2 At^2/2 At2/2
0 A 1 + K p \dfrac{A}{1+K_p} 1+KpA ∞ \infty ∞ \infty
I0 A K v \dfrac{A}{K_v} KvA ∞ \infty
II00 A K a \dfrac{A}{K_a} KaA
  • Remark :
    • 前馈扰动时,该法不适用
    • 始终可应用终值定理求取稳态误差
扰动作用下的稳态误差(终值定理)

e s s f = lim ⁡ t → ∞ e f ( t ) = lim ⁡ s → 0 s E f ( s ) = lim ⁡ s → 0 s Φ e f ( s ) F ( s ) Φ e f = E ( s ) F ( s ) e_{ssf}=\lim_{t\rightarrow\infty} e_f(t)=\lim_{s\rightarrow0} s E_f(s)=\lim_{s\rightarrow0}s\varPhi_{ef}(s)F(s)\\ \Phi_{ef}=\dfrac{E(s)}{F(s)} essf=tlimef(t)=s0limsEf(s)=s0limsΦef(s)F(s)Φef=F(s)E(s)

  • 线性叠加原理:

e s s = e s s r + e s s f e_{ss}=e_{ssr}+e_{ssf} ess=essr+essf

动态误差系数
  • 输入-偏差传递函数在 Taylor 级数:

Φ e ( s ) = E ( s ) R ( s ) = ∑ i = 0 ∞ 1 i ! Φ e ( i ) ( s ) s i = ∑ i = 0 ∞ c i s i \varPhi_e(s)=\frac{E(s)}{R(s)}=\sum_{i=0}^\infty \frac{1}{i!}\varPhi^{(i)}_e(s) s^i =\sum_{i=0}^\infty c_i s^i Φe(s)=R(s)E(s)=i=0i!1Φe(i)(s)si=i=0cisi

其中,
c i = 1 i ! [ d i d s i E ( s ) R ( s ) ] s = 0 c_i=\dfrac{1}{i!}[\dfrac{d^i}{ds^i}\dfrac{E(s)}{R(s)}]_{s=0} ci=i!1[dsidiR(s)E(s)]s=0

E ( s ) = ∑ i = 0 ∞ c i s i R ( s ) E(s)=\sum_{i=0}^\infty c_i s^i R(s) E(s)=i=0cisiR(s)

e s s ( t ) = ∑ i = 0 ∞ c i r ( i ) ( t ) e_{ss}(t)=\sum_{i=0}^\infty c_i r^{(i)}(t) ess(t)=i=0cir(i)(t)

  • 处理:特征多项式作长除法

    • Tips: 分子分母升幂排列
      
线性离散系统稳态误差
一般方法(终值定理)

$GH(z)=\mathscr Z[G(s)H(s)]=\dfrac{1}{(z-1)^v}GH_0(z) $

步骤

  • 判断稳定性
  • 求误差脉冲传函 Φ e ( s ) = E ( z ) R ( z ) = 1 1 + G H ( z ) \Phi_e(s)=\dfrac{E(z)}{R(z)}=\dfrac{1}{1+GH(z)} Φe(s)=R(z)E(z)=1+GH(z)1
  • 终值定理: e s s ∗ = lim ⁡ z → 1 ( z − 1 ) 1 + G H ( z ) R ( z ) e_{ss}^*=\lim\limits_{z\to1}\dfrac{(z-1)}{1+GH(z)}R(z) ess=z1lim1+GH(z)(z1)R(z)
静态误差系数
  • Remark :
    • 以下结论适用于课本p321图示的典型系统,误(偏)差脉冲序列表达式与实际系统开关位置相关。
  1. 阶跃

K p = lim ⁡ z → 1 G H ( z ) e s s ∗ ( ∞ ) = A 1 + K p K_p=\lim_{z\rightarrow1}GH(z)\\ e^*_{ss}(\infty)=\frac{A}{1+K_p} Kp=z1limGH(z)ess()=1+KpA

  1. 斜坡

K v = lim ⁡ z → 1 ( z − 1 ) G H ( z ) e s s ∗ ( ∞ ) = A T K v K_v=\lim_{z\rightarrow1} (z-1)GH(z)\\ e^*_{ss}(\infty)=\frac{AT}{K_v} Kv=z1lim(z1)GH(z)ess()=KvAT

  1. 加速度
    K a = lim ⁡ z → 1 ( z − 1 ) 2 G H ( z ) e s s ∗ ( ∞ ) = A T 2 K a K_a=\lim_{z\rightarrow1} (z-1)^2 GH(z)\\ e^*_{ss}(\infty)=\frac{AT^2}{K_a} Ka=z1lim(z1)2GH(z)ess()=KaAT2
  • 汇总表格
A ⋅ 1 ( t ) A\cdot1(t) A1(t) A t At At A t 2 / 2 At^2/2 At2/2
0 A 1 + K p \dfrac{A}{1+K_p} 1+KpA ∞ \infty ∞ \infty
I0 A T K v \dfrac{AT}{K_v} KvAT ∞ \infty
II00 A T 2 K a \dfrac{AT^2}{K_a} KaAT2
动态误差系数
  • 定义、形式同连续系统

Φ e ∗ ( s ) = Φ e ∗ ( z ) ∣ z = e s T \varPhi_e^*(s)=\left. \varPhi_e^*(z)\right|_{z=e^{sT}} Φe(s)=Φe(z)z=esT

  • 求取方法同连续系统

4.3 基于根轨迹的稳定性分析

概念
  • 当系统某参数变化时,闭环系统特征方程的根在s平面上的变化轨迹

    • 一般根轨迹:负反馈系统的开环增益从0变到 + ∞ +\infty +时,闭环极点的变化轨迹
  • 回顾:

    • 开环增益 K K K
    • 根轨迹增益 K ∗ K^* K
  • 闭环零点=前向开环零点+反馈开环极点

  • 特征方程: D ( s ) = G ( s ) H ( s ) + 1 = 0 D(s)=G(s)H(s)+1=0 D(s)=G(s)H(s)+1=0 ,即

G ( s ) H ( s ) = k ( s − z 1 ) ⋯ ( s − z m ) ( s − p 1 ) ⋯ ( s − p n ) = − 1 G(s)H(s)=\frac{k(s-z_1)\cdots(s-z_m)}{(s-p_1)\cdots(s-p_n)}=-1 G(s)H(s)=(sp1)(spn)k(sz1)(szm)=1

闭环极点满足:
∣ G ( s ) H ( s ) ∣ = 1 ∠ G ( s ) H ( s ) = ∑ i = 1 m ∠ ( s − z i ) − ∑ j = 1 n ∠ ( s − p j ) = ( 2 k + 1 ) π , k ∈ N |G(s)H(s)|=1\\ \angle G(s)H(s) = \sum_{i=1}^m \angle(s-z_i) - \sum_{j=1}^n \angle(s-p_j) = (2k+1)\pi,k\in \mathbb N G(s)H(s)=1G(s)H(s)=i=1m(szi)j=1n(spj)=(2k+1)π,kN

  • 满足幅角条件的点就是闭环极点

21,22,23次课件

绘制
  1. 起点与终点
  • 起始(k=0)于开环极点,终止( k → + ∞ k\rightarrow+\infty k+)于开环零点 。若 n > m n>m n>m,则有 n − m n-m nm条趋于 ∞ \infty
  1. 分支数、对称性、连续性
    • 分支数=闭环特征根数=max{开环零点数m,开环极点数n}
    • 连续性:…
    • 对称性:根轨迹关于实轴对称
  2. 实轴上的根轨迹
image-20200105004059461
  1. 特征根的和与积

D ( s ) = s n + a n − 1 s n − 1 + ⋯ + a 0 ∑ i = 1 n s i = − a n − 1 ∏ i = 1 n ( − s i ) = a 0 D(s)=s^n + a_{n-1}s^{n-1}+\cdots+a_0\\ \sum_{i=1}^n s_i = -a_{n-1}\\ \prod_{i=1}^n (-s_i) = a_0 D(s)=sn+an1sn1++a0i=1nsi=an1i=1n(si)=a0

n − m ≥ 2 n-m \ge2 nm2 时,一部分根左移,另一部分根必定右移,且移动总量为零。

结论:若系统有两个开环极点,一个开环零点,复平面的根轨迹是以该零点为圆心的圆弧。
image-20200105005329674

4.4 基于状态空间表达式的稳定性分析

1. Lyapunov意义下的稳定性基本概念

对于线性系统大范围渐近稳定    ⟺    \iff 渐近稳定

对于非线性系统大范围渐近稳定 ⟹ \Longrightarrow 渐近稳定,但渐近稳定不一定是大范围渐近稳定。

2. Lyapunov第一法
  • 第一法:利用微分方程的解来判断系统稳定性(线性定常系统的特征值判据)
  • 第二法:利用Lyapunov函数来判断系统稳定性
  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值