自动控制原理 学习笔记2

3 几个基本的概念以及传递函数

在这里插入图片描述

  1. 前向通道传递函数,顺着系统输入箭头的方向,到达系统输出的通路,且路径中经过的环节不重复。 C ( s ) E ( s ) = G 1 ( s ) ⋅ G 2 ( s ) \frac{C(s)}{E(s)}=G_1(s)·G_2(s) E(s)C(s)=G1(s)G2(s)
  2. 反馈通路的传递函数。 B ( s ) C ( s ) = H ( s ) \frac{B(s)}{C(s)}=H(s) C(s)B(s)=H(s)
  3. *开环传递函数。 B ( s ) E ( s ) = G 1 ( s ) G 2 ( s ) H ( s ) \frac{B(s)}{E(s)}=G_1(s)G_2(s)H(s) E(s)B(s)=G1(s)G2(s)H(s)
    在这里插入图片描述
    开环传递函数所描述的系统可以看作上图中黄色方框内的部分。它以E(s)作为输入,以B(s)作为输出。可以发现,开环传递函数=前向通道传递函数与反馈通道传递函数的乘积
    知道了开环传递函数的概念,反馈环节的传递函数又可以表示成:
    反 馈 环 节 传 递 函 数 = 前 向 通 道 传 递 函 数 1 + 前 向 通 道 传 递 函 数 ⋅ 反 馈 通 道 传 递 函 数 = 前 向 通 道 传 递 函 数 1 + 开 环 传 递 函 数 反馈环节传递函数=\frac{前向通道传递函数}{1+前向通道传递函数·反馈通道传递函数}=\frac{前向通道传递函数}{1+开环传递函数} =1+=1+

在这里插入图片描述
正反馈同理。

  1. 闭环传递函数。 C ( s ) R ( s ) \frac{C(s)}{R(s)} R(s)C(s)
  2. *偏差传递函数。 E ( s ) R ( s ) \frac{E(s)}{R(s)} R(s)E(s)
    在这里插入图片描述
    经过上图中的变形,我们可以进一步得到:
    E ( s ) R ( s ) = 1 1 + H ( s ) G 1 ( s ) G 2 ( s ) \frac{E(s)}{R(s)}=\frac{1}{1+H(s)G_1(s)G_2(s)} R(s)E(s)=1+H(s)G1(s)G2(s)1
    偏差传递函数与系统闭环传递函数的分母是一样的。
  3. 输出对扰动的传递函数
    在这里插入图片描述
    因为此时我们不关注系统原来的输入 R ( s ) R(s) R(s),我们可以暂时将它从框图中抹去,经过变形后,以扰动作为系统输入的框图如上图所示。系统的传递函数表示为: Φ = G 2 ( s ) 1 + G 1 ( s ) G 2 ( s ) H ( s ) \Phi=\frac{G_2(s)}{1+G_1(s)G_2(s)H(s)} Φ=1+G1(s)G2(s)H(s)G2(s)
  4. 偏差对扰动的传递函数
    在这里插入图片描述
    E ( s ) N ( s ) = − G 2 ( s ) H ( s ) 1 + G 1 ( s ) G 2 ( s ) H ( s ) \frac{E(s)}{N(s)}=\frac{-G_2(s)H(s)}{1+G_1(s)G_2(s)H(s)} N(s)E(s)=1+G1(s)G2(s)H(s)G2(s)H(s)
    此时我们又发现,扰动信号的系统传递函数的分母与闭环传递函数是一样的。
  • 通过比较上面给出的不同传递函数我们可以得出结论,对于同一个系统,不同的输入,它们得到的等效传递函数的分母是一样的。
  • 任何一个信号点都可以找到它和任意一个输入的传递函数。
  • 线性系统满足叠加原理,当系统输入 R ( s ) R(s) R(s)与扰动 N ( s ) N(s) N(s)同时作用于系统时,系统输出等于控制两个变量分别为0时系统响应的叠加。即系统对扰动的传递函数以及对输入的传递函数之和。

4 方框图的绘制

明确系统输入输出,以及系统的传递函数。
将框图中信号相同的位置相连。
MOOC

5 梅森公式与信号流图

如何由方框图得到系统的传递函数,除了等效变换也可以用梅森公式。
前向通路:顺着系统输入箭头的方向,到达系统输出的通路,且路径中经过的环节不重复。
回路/环路: 信号通过每一个基本单元不多于一次的闭合通路称为回路(环路)
回路中经过的所有单元传递函数的乘积(串联)称为回路传递函数,用 L a L_a La来表示。
梅森公式:
Ψ ( s ) = ∑ k = 1 n P k Δ k Δ \Psi(s)=\frac{\sum_{k=1}^n P_k \Delta _k}{\Delta} Ψ(s)=Δk=1nPkΔk
公式中 P k P_k Pk代表前向通路的传递函数,假定系统有n条前向通路。
在这里插入图片描述
MOOC

### 关于自动控制原理的学习资料与笔记 #### 一、基本概念与框架结构 对于希望深入理解自动控制原理的人来说,构建一个全面的知识体系至关重要。一份详尽的学习笔记应当覆盖该学科的核心领域,包括但不限于以下几个方面: - **基础知识**:涵盖自动控制系统的基本定义及其分类[^1]。 - **数学模型建立**:讲解如何通过微分方程或其他方式来描述物理过程,并将其转换成适合计算机处理的形式[^3]。 - **分析方法**:涉及时域响应特性研究、稳定性判据探讨等内容;还包括基于根轨迹图和伯德图(Bode Plot)等工具来进行性能评估的技术手段。 #### 二、具体技术细节解析 针对某些特定主题,如离散时间系统的研究,则需进一步细化讨论范围。例如,在考虑采样数据的影响以及Z变换的应用场景下,可以探索差分方程作为建模工具的有效性[^2]。此外,当涉及到实际工程应用中的控制器设计时(比如PID调节),则应关注参数调整策略及其实现途径。 #### 三、实践操作指南 为了帮助读者更好地掌握所学理论并应用于解决现实世界的问题,《自动控制原理》的相关教程还应该提供一些实用性的指导材料。这可能意味着要引入MATLAB/Simulink这样的软件平台用于仿真验证实验结果,或是给出具体的编程实例以便加深印象[^4]。 ```matlab % 创建简单的闭环传递函数G(s)=K/(s*(s+a)) num = [K]; % 分子系数向量 den = conv([1 a],[1 0]); % 构造分母多项式的卷积形式 sys_tf = tf(num, den); % 定义传递函数对象 step(sys_tf); % 绘制单位阶跃响应曲线 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值