估计中的概率公式总结

本文总结了概率论中的核心概念,包括条件概率、联合概率、边缘概率、全概率公式和贝叶斯公式。通过实例解释了贝叶斯公式在状态估计中的应用,展示了如何从条件联合分布推导出条件贝叶斯公式。此外,还介绍了马尔科夫链的基本原理,强调了其在处理依赖当前状态的随机过程中的重要性。
摘要由CSDN通过智能技术生成

0.引言

近期遇到的概率公式,整理一下。

1.基本概念

  • 条件概率 P ( A ∣ B ) P(A|B) P(AB) : B B B 发生的情况下, A A A 发生的概率。
  • 联合概率 P ( A , B ) = P ( A ∣ B ) P ( B ) P(A,B) = P(A|B)P(B) P(A,B)=P(AB)P(B) : A A A B B B 同时发生的概率 = B B B发生 * B B B 发生时 A A A 发生。联合 = 条件 * 边缘
  • 边缘概率 P ( B ) P(B) P(B) : 边缘概率与联合概率对应,仅与单个随机变量有关的概率。
  • 全概率 P ( A ) = ∑ i = 1 n P ( A ∣ B i ) P ( B i ) P(A)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right) P(A)=i=1nP(ABi)P(Bi) : 若事件 B 1 , B 2 , … , B i B_1,B_2,…, B_i B1B2,Bi 构成一个完备事件组且都有正概率,则对事件 A A A,有前述全概率公式成立,如图:

哎哟,图中的竖线画漏了,凑合看吧,懒得改了。

2.贝叶斯公式

由联合概率可得: P ( A , B ) = P ( A ∣ B ) ⋅ P ( B ) = P ( B ∣ A ) ⋅ P ( A ) P(A, B)=P(A \mid B) \cdot P(B)=P(B \mid A) \cdot P(A) P(A,B)=P(AB)P(B)=P(BA)P(A)由此得到贝叶斯公式的常规形式: P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

全概率公式和贝叶斯公式的结合:

P ( A ∣ B ) = P ( B ∣ A ) P ( A ) ∑ i = 1 n P ( B ∣ A i ) P ( A i ) P(A \mid B)=\frac{P(B \mid A) P(A)}{\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)} P(AB)=i=1nP(BAi)P(Ai)P(BA)P(A)

在状态估计时:

p ( x ∣ y ) = p ( y ∣ x ) p ( x ) p ( y ) p(\boldsymbol{x} \mid \boldsymbol{y})=\frac{p(\boldsymbol{y} \mid \boldsymbol{x}) p(\boldsymbol{x})}{p(\boldsymbol{y})} p(xy)=p(y)p(yx)p(x)

赋予该式物理意义:

  • x x x : 状态,可由状态转移方程推出,也称为先验
  • y y y :传感器读数
  • p ( y ∣ x ) p(y|x) p(yx) : 传感器模型,可由观测方程给出,也称为似然
  • p ( x ∣ y ) p(x|y) p(xy) : 状态估计, 也称后验

因此贝叶斯估计: 后验估计 ∝ \propto 似然 * 先验参考链接

3.独立

  • x , y x,y x,y 独立:

p ( x , y ) = p ( x ) p ( y ) p ( x ∣ y ) = p ( x ) p ( y ∣ x ) = p ( y ) \begin{aligned} &p(x, y)=p(x) p(y) \\ &p(x \mid y)=p(x) \\ &p(y \mid x)=p(y) \end{aligned} p(x,y)=p(x)p(y)p(xy)=p(x)p(yx)=p(y)

  • x x x y y y 条件独立 (即有条件的独立):
    p ( x , y ∣ z ) = p ( x ∣ z ) p ( y ∣ z ) p ( x ∣ y , z ) = p ( x ∣ z ) p ( y ∣ x , z ) = p ( y ∣ z ) \begin{aligned} &\mathrm{p}(x, y \mid z)=p(x \mid z) p(y \mid z) \\ &p(x \mid y, z)=p(x \mid z) \\ &p(y \mid x, z)=p(y \mid z) \end{aligned} p(x,yz)=p(xz)p(yz)p(xy,z)=p(xz)p(yx,z)=p(yz)

4.条件联合分布

当有三个或多个随机变量时,可以根据需要灵活分解条件联合分布:
P ( A , B ∣ C ) = P ( A ∣ B , C ) P ( B ∣ C ) P(A, B \mid C)=P(A \mid B, C) P(B \mid C) P(A,BC)=P(AB,C)P(BC)
这个等式推导如下。当有三个随机变量时,以下等式仍然是成立的:

P ( A ∣ B , C ) = P ( A , B , C ) P ( B , C ) P(A\mid B, C)=\frac{P(A, B, C)}{P(B, C)} P(AB,C)=P(B,C)P(A,B,C) P ( A , B ∣ C ) = P ( A , B , C ) P ( C ) P(A, B \mid C)=\frac{P(A, B,C)}{P(C)} P(A,BC)=P(C)P(A,B,C)
稍微变换一下这俩等式,可以得到:

P ( A ∣ B , C ) P ( B , C ) = P ( A , B ∣ C ) P ( C ) P(A \mid B, C) P(B, C)=P(A, B \mid C) P(C) P(AB,C)P(B,C)=P(A,BC)P(C)
而其中 P ( B , C ) = P ( B ∣ C ) P ( C ) P(B, C)=P(B \mid C) P(C) P(B,C)=P(BC)P(C)将这个等式代入上面式子中,可以得到条件联合分布:

P ( A , B ∣ C ) = P ( A ∣ B , C ) P ( B ∣ C ) P(A, B \mid C)=P(A \mid B, C) P(B \mid C) P(A,BC)=P(AB,C)P(BC)

5.条件贝叶斯公式

类比,贝叶斯公式可由联合概率推导出,条件贝叶斯公式也可从条件联合概率公式推导出。由条件联合概率: $P(A, B \mid C)=P(A \mid B, C) P(B \mid C) = P(B \mid A, C) P(A \mid C) $,有

P ( A ∣ B , C ) = P ( B ∣ A , C ) P ( A ∣ C ) P ( B ∣ C ) = η P ( B ∣ A , C ) P ( A ∣ C ) P(A \mid B, C)=\frac{P(B \mid A, C) P(A \mid C)}{P(B \mid C)}=\eta P(B \mid A, C) P(A \mid C) P(AB,C)=P(BC)P(BA,C)P(AC)=ηP(BA,C)P(AC)
即是,条件贝叶斯公式。

6.马尔科夫

马尔可夫链是满足马尔可夫性质的随机变量序列 X 1 , X 2 , X 3 , . . . X_1, X_2, X_3, ... X1,X2,X3,...,即给出当前状态,将来状态和过去状态是相互独立的。

P ⁡ ( X n + 1 = x ∣ X 1 = x 1 , X 2 = x 2 , … , X n = x n ) = P ⁡ ( X n + 1 = x ∣ X n = x n ) \operatorname{P}\left(X_{n+1}=x \mid X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)=\operatorname{P}\left(X_{n+1}=x \mid X_{n}=x_{n}\right) P(Xn+1=xX1=x1,X2=x2,,Xn=xn)=P(Xn+1=xXn=xn)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值