滤波
文章平均质量分 87
滤波相关算法
古路
这个作者很懒,什么都没留下…
展开
-
CSF(Cloth Simulation Filter)点云地面点滤波
⾸先,我们将布粒⼦和LIDAR点投射到同⼀⽔平平⾯,然后在此2D平⾯中找到每个布粒⼦的最近的激光点云(称为对应点,CP)。IHV表⽰粒⼦能到达的最低位置,即如果粒⼦达到由该值定义的最低位置,则不能再向前移动。如果两个连接的粒⼦都是可移动的,我们将它们以相反的⽅向移动。通过分析布的节点与相应的LIDAR点之间的相互作⽤,可以确定布的最终形状,并将其⽤作将原始点分类为地⾯和⾮地⾯。粒⼦的位置和速度取决于作⽤在粒⼦上的⼒。当使⽤内⼒移动粒⼦的运动⽅向时,两个具有不同⾼度值的粒⼦将尝试移动到同⼀⽔平⾯。原创 2024-05-05 17:32:32 · 1742 阅读 · 0 评论 -
Kalman滤波器--从高斯融合推导
状态估计问题的求解思路:假设系统 kkk 时刻的观测量为 zkz_kzk ,状态量为 xkx_kxk ,这两个变量是符合某种分布的随机变量,且它们不相互独立。我们希望求出:P(xk∣x0,z1:k)P\left(\boldsymbol{x}_{k} \mid \boldsymbol{x}_{0}, \boldsymbol{z}_{1: k}\right)P(xk∣x0,z1:k)根据贝叶斯法则,(估计中的概率公式参考)将系统状态的概率求解拆分如下:P(xk∣x0,z1:k)∝P(zk∣x原创 2022-06-28 10:55:07 · 516 阅读 · 0 评论 -
估计中的概率公式总结
估计中的概率公式总结0.引言1.基本概念2.贝叶斯公式3.独立4.条件联合分布5.条件贝叶斯公式6.马尔科夫0.引言近期遇到的概率公式,整理一下。1.基本概念条件概率 P(A∣B)P(A|B)P(A∣B) : BBB 发生的情况下,AAA 发生的概率。联合概率 P(A,B)=P(A∣B)P(B)P(A,B) = P(A|B)P(B)P(A,B)=P(A∣B)P(B) : AAA 、 BBB 同时发生的概率 = BBB发生 * BBB 发生时 AAA 发生。联合 = 条件 * 边缘边缘概率原创 2021-12-16 12:08:01 · 3470 阅读 · 2 评论 -
栅格地图建立-Grid-Mapping
占栅格地图-Occupancy Grid Map,理论推导及代码阅读。原创 2021-12-15 18:29:29 · 6301 阅读 · 0 评论 -
EKF-SLAM原理推导
EKF-SLAM0.引言1. 运动模型1.1.里程计模型1.2.运动更新2.测量模型0.引言参考链接。基本是基于概率机器人进行实现的,是一个很好的学习材料。此博客只是个人学习记录。AlgorithmExtendedKalmanfilter(μt−1,Σt−1,ut,zt)Algorithm Extended Kalman filter \left(\mu_{t-1}, \Sigma_{t-1}, u_{t}, z_{t}\right)AlgorithmExtendedKalmanfilter(μ原创 2021-12-02 22:46:47 · 2978 阅读 · 10 评论 -
MLE、MAP、BE_最大似然估计、最大后验估计及贝叶斯估计
MLE、MAP、BE_最大似然估计、最大后验估计及贝叶斯估计0.引言1、贝叶斯公式2、极大似然估计(MLE)3、最大后验估计(MAP)4、贝叶斯估计(BE)0.引言ref01ref02ref03ref04总结放在前:在对事物建模时,用 θ\thetaθ 表示模型的参数,请注意,解决问题的本质就是求 θ\thetaθ :MLE: 最大似然估计思想为,观测数据(样本)发生概率最大的参数就是最好的参数(谁大像谁): θ∗=argmaxθp(X∣θ)=argmaxθ∏x1xnp(原创 2021-12-01 15:09:33 · 484 阅读 · 0 评论 -
Extended Kalman Filter
Extended Kalman Filter0.引言1.推导0.引言参考Kalman Filter1.推导原创 2021-11-30 16:14:50 · 189 阅读 · 0 评论 -
Dynamic Model
Kalman0.引言1.State-Space Model2.Dynamic Model3.KalmanFilter0.引言参考:悉尼科技大学.徐亦达老师课程.1.State-Space Modelxtx_txt:隐状态,待估计量;纯视觉SLAM中即为(ξi,pi)(\xi_i,p_i)(ξi,pi) 6个自由度自由度。yty_tyt:观测量;纯视觉SLAM中即为Landm...原创 2019-07-10 15:12:36 · 599 阅读 · 0 评论 -
Kalman Filter
Kalman01 Filter0.引言1.Kalman Filter1.1. 建模1.2. 五个重要公式2.MatlabDemo0.引言卡尔曼滤波(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。Kalman.1.Kalman Filter理论上......原创 2019-07-10 17:36:02 · 2416 阅读 · 0 评论