1.数学建模基础知识 862
1.数学模型
客观世界中的实际食物的一种数学简化,他常常是以某种意义接近实际食物的抽象形式存在的,但它和真实的食物有着本质的区别。
2.数学建模的过程
- 模型准备
- 模型假设
- 模型建立
- 模型求解
- 模型分析
- 模型验证
- 模型应用
3.数学建模的方法
- 直接分析法
- 类比法
- 数据分析法
- 构想法
2.图论
1.最小生成树
1.普里姆算法
当前形成的集合T始终是一棵树。因为每次添加的边是使树中的权尽可能小,因此,这是一种贪心的策略。
2.克鲁斯卡尔算法
当前形成的集合T除最后的结果外,始终是一个森林。
2.最短路径
1.单源最短路径
已知有向带权图G=(V,E)找出从某个源点s V到V中其余各顶点的最短路径,成为单源最短路径。
2.每一对顶点之间的最短路径
3.网络与最大流量
每找出一条路径算出流量后,该路径上各段线路上的流量应扣除已经算过的流量,形成剩余流量,剩余流量为0的线段应将其删除 断开。
3.决策论
1.决策的分类与模型
1.决策的分类
重要性分类 战略决策 策略决策 执行决策
决策的结果分类 程序决策 非程序决策
按定量和定性分类 定量决策 定性决策
按照决策环境 确定型决策 风险决策 不确定型决策
决策过程的连续性分类 单项决策 序列决策
2.决策的模型
面向决策结果的方法 确定目标-收集信息-提出方案-方案选择-决策
面向决策过程的 预决策-决策-决策后
- 决策人
- 可供选择的方案、行动或策略
- 衡量选择方案的准则。目的、目标、属性、正确性的标准
- 事件
- 每一事件的发生将会产生的某种结果
- 决策者的价值观
2.不确定型决策
决策者对环境情况一无所知,决策者根据自己的主观倾向进行决策。
悲观主义准则 大中取小
乐观主义准则 小中取大
折中主义准则
等可能性准则
后悔值准则
3.灵敏度分析
需要分析为决策所用的数据可在多大范围内变动,原最优决策方案继续有效,这就是灵敏度分析,也称敏感性分析
4.线性规划
1.图解法
2.关于解的讨论
3.单纯形法
4.线性规划的适用性
5.动态规划
1.划分阶段 按照问题的时间或空间特征 把问题分为若干个阶段
2.选择状态 将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。