某乳制品加工厂用纯牛奶和酸牛奶两种生产原料,加工生产甲、乙两种乳制品、该厂加工每单位乳制品消耗原料数、每单位乳制品的利润如下所示。则该公司的最大利润为( )万元。公司获得最大利润时,生产甲的量数是( )吨。
解析:
假设甲乳制品生产的数量是X吨,乙乳制品生产的数量是Y吨。根据题干可以得到:
不等式1:X+2Y≤86
不等式2:5X+3Y≤150;
PS:二元一次方程不等式,可以让不等式1都乘以5,得到:5X+10Y≤430
然后将①-②,7Y ≤ 280,因此 Y ≤ 40,所以 X ≤ 6
然后算最大利润:当 X=6,Y=40时,利润最大,为:6×3+40×4=178(万元)
甲乳制品生产的数量是6吨。
---
有A、B、C、D四个临省,同时向甲、乙、丙、丁四个城市运输援助物资,假设规定一个省对口援助一个城市。四省道各城市的运输时间如下所示。请给出一个合理的方案,使得物资运输总时间最短,则最短的时间为( 75)小时.
解析:方法1,用穷举法,列出所有的可能项,然后比较,比如:
方案①:A-甲,B-乙,C-丙,D-丁,时间:79小时。
方案②:A-甲,B-乙,C-丁,D-丙,时间:82小时。
。。。时间多的话,可以慢慢磨。
方法2,观察法。观察甲乙丙丁分别是哪些地方来的最短。
发现:甲-A,乙-C,丙-D,丁-B,时间:75小时
---
某供应商为高铁提供设备,并负责该设备5年的售后服务 ,售后可以采取维护方式,他可以选择更换新设备,假设新设备的制造成本为9万元,设备从换新的第2年起,每年需要支出一定的维护费用。各年维护用如下表所示,则以5年期计算,最优化的设备使用成本为( )万元。
第1年换设备:9+6+7+8+8-38
第2年换设备:9+9+6+7+8=39
第3年换设备:9+6+9+6+7=37
第4年换设备:9+6+7+9+6-37
第5年换设备:9+6+7+8+9=39
所以第3年和第4年换设备成本是最低的,都是37。
---
某公司计划将500万元研发经费投入3个研究方向,各方向投入金额和未来能获得的利润如表所示,为获得最大利润,公司在方向A应投入( )万元,B应投入( )万元。
解析:分别算出投资 100-500 万元, ABC 的投资收益:
投资额 | A | B | C |
100 | 2 | 5 | 4 |
200 | 3 | 4 | 3.5 |
300 | 3.33 | 3 | 3 |
400 | 3.25 | 3 | 2.75 |
500 | 3.6 | 3.2 | 2.2 |
从表格中发现,投资B 100万元单项收益最高,因此先投资B 100万元。
因为公司只有 500 万元,剩下 400 万元有如下方案:
①全部投资A,A的收益为 1300 万元,总收益:1800万元
②300万元投资A,100万元投资C,总收益:1000+400+500=1900万元
③200万元投资A,200万元投资C,总收益:600+700+500=1800万元
因此,方案②的总收益最高是 1900 万元,此时A投资300万元。
---
关于动态规划的描述,不正确的是(B )
A 动态规划是解决多阶段决策过程最优化解的一种常用算法思想
B 动态规划的实质是分治思想和解决冗余,与分治法和回溯法类似
C 在处理离散型问题时,动态规划比线性规划效果更好
D 一个标准的动态规划算法包括划分阶段和选择状态两个步骤
动态规划法是决策分析中的一种常用方法,是解决多阶段决策过程问题的一种最优化方法。所谓多阶段决策过程,就是将问题分成若干个相互联系的阶段,每个阶段都作出决策,从而使整个过程达到最优化。许多实际问题利用动态规划法处理,常比线性规划法更为有效,特别是对于那些离散型问题。 设计一个标准的动态规划算法,通常可按划分阶段和选择状态两个步骤进行。
---