线性代数——第二章 矩阵运算

矩阵运算

1.各种矩阵定义

零矩阵: 所有元素都为0 的矩阵,如$\begin{bmatrix} 0&0&0\\ 0&0&0\\ 0&0&0\end{bmatrix}$

单位矩阵I (或E): 对角线元素都为1,去其他都为0的矩阵,如$\begin{bmatrix} 1&0&0\\ 0&1&0\\ 0&0&1\end{bmatrix}$

对角矩阵: 对角线元素不为0,其他都为0 的矩阵如$\begin{bmatrix} \lambda &0&0\\ 0&\lambda &0\\ 0&0&\lambda \end{bmatrix}$

矩阵左乘: AB 表示矩阵A左乘矩阵B(左表示A的相对位置)

矩阵右乘: BA 表示矩阵A右乘矩阵B(右表示A的相对位置)

对称矩阵: 元素以对角线为对称轴对应相等的矩阵,如$\begin{bmatrix} 0&1&3\\ 1&0&2\\ 3&2&0\end{bmatrix}$

如果矩阵A为n阶方阵,且A^T = A ,则矩阵A为对称矩阵

共轭矩阵: 矩阵A 元素为复数, 则元素为A的共轭复数的矩阵,为A的共轭矩阵

2. 矩阵的转置

矩阵A=$\begin{bmatrix} a_1_1&a_1_2&a_1_3\\ a_2_1&a_2_2&a_2_3\\ a_3_1&a_3_2&a_3_3\end{bmatrix}$, 则转置矩阵A^T=$\begin{bmatrix} a_1_1&a_2_1&a_3_1\\ a_1_2&a_2_2&a_3_2\\ a_1_3&a_2_3&a_3_3\end{bmatrix}$

即沿对角线互换,如a_1_2a_2_1 互换位置

如矩阵A=$\begin{bmatrix} 1&2&0\\ 3&-1&1\end{bmatrix}$,则 A^T = $\begin{bmatrix} 1&3\\ 2&-1\\ 0&1\end{bmatrix}$

3. 伴随矩阵

由矩阵A的各个元素的代数余子式A_i_j 顺序组成的矩阵的转置 为A的伴随矩阵,如

如矩阵A= $\begin{bmatrix} a_1_1&a_1_2&a_1_3\\ a_2_1&a_2_2&a_2_3\\ a_3_1&a_3_2&a_3_3\end{bmatrix}$   

余子式M_1_1 = $\begin{bmatrix} a_2_2&a_2_3\\ a_3_2&a_3_3\end{bmatrix}$,代数余子式A_1_1 =(-1)^1^+^1M_1_1=$\begin{bmatrix} a_2_2&a_2_3\\ a_3_2&a_3_3\end{bmatrix}$

...........................................其他的代数余子式类推

则伴随矩阵为A^*= $\begin{bmatrix} A_1_1&A_2_1&A_3_1\\ A_1_2&A_2_2&A_3_2\\ A_1_3&A_2_3&A_3_3\end{bmatrix}$

 

4. 逆矩阵

因为 AA* = A*A =|A| E

由因为Y=AX   则 A* Y = A*AX  则 A* Y = |A| X

当|A|不等于0 时, X = \frac{1}{|A|}A^*Y

则表明A的逆 A^-^1= \frac{1}{|A|}A^*

当 时|A|\neq 0, 矩阵A 可逆,矩阵A为非奇异矩阵

当|A| = 0时, 矩阵A为奇异矩阵,不可逆

如求A=$\begin{bmatrix} a&b\\ c&d\end{bmatrix}$ 的逆阵

|A| = ad - bc

代数余子式:

A_1_1 =(-1)^1^+^1M_1_1=d , A_1_2 =(-1)^1^+^2M_1_2= -c

A_2_1 =(-1)^2^+^1M_2_1= -b , A_2_2 =(-1)^2^+^2M_2_2= a

A^* =$\begin{bmatrix} A_1_1&A_2_1\\ A_1_2&A_2_2\end{bmatrix}$ = $\begin{bmatrix} d&-b\\ -c&a\end{bmatrix}$

A^-^1= \frac{1}{|A|}A^*  = \frac{1}{ad-bc}    *$\begin{bmatrix} d&-b\\ -c&a\end{bmatrix}$

 

求A=$\begin{bmatrix} 1&2&3\\ 2&2&1\\ 3&4&3\end{bmatrix}$ 的逆阵A^-^1

|A|=1*2*3+2*1*3+3*2*4 - 3*2*3 - 2*2*3 - 1*1*4 = 6+6+24 -18 -12 -4 =2 \neq 0

则矩阵A 可逆

代数余子式:

A_1_1 =(-1)^1^+^1M_1_1 =$\begin{bmatrix} 2&1\\ 4&3\end{bmatrix}$ =2*3 - 1*4 =2 (不是很明白为什么这么转)

A_1_2 =(-1)^1^+^2M_1_2 = -$\begin{bmatrix} 2&1\\ 3&3\end{bmatrix}$ = -(2*3 - 1*3) = -3

A_1_3 =(-1)^1^+^3M_1_3 = $\begin{bmatrix} 2&2\\ 3&4\end{bmatrix}$ = 8-6 =2

A_2_1 =(-1)^2^+^1M_2_1 =6

A_2_2 = -6 , A_2_3 =2 ,

A_3_1 = -4 , A_3_2 =5 , A_3_3 =-2

A^* =$\begin{bmatrix} A_1_1&A_2_1&A_3_1\\ A_1_2&A_2_2&A_3_2\\ A_1_3&A_2_3&A_3_3\end{bmatrix}$ =$\begin{bmatrix} 2&6&-4\\ -3&-6&5\\ 2&2&-2\end{bmatrix}$

A^-^1= \frac{1}{|A|}A^* = $\begin{bmatrix} 1&3&-2\\ -3/2&-3&5/2\\ 1&1&-1\end{bmatrix}$

 

 

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值