电子对抗中的烧穿距离

本文介绍了电子对抗中的烧穿距离概念,即干扰失效的距离。烧穿距离是电子干扰设备对目标压制性干扰后,目标信号重新超过干扰信号的临界距离。通过雷达方程和干扰方程的推导,分析了烧穿距离的计算方法,并讨论了如何通过改变参数来影响烧穿距离,对于雷达和电子对抗双方的战略意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

俗话说:没有干扰不了的雷达,也没有对抗不了的干扰,在雷达与电抗这两家矛与盾的较量中,有这样一个临界距离,我们称之为“烧穿距离”。那么什么叫做“烧穿距离”呢?我们如何来计算“烧穿距离”呢?本文就着重对“烧穿距离”的公式进行推导,帮助大家更好的理解这个概念。

首先,我们先来介绍“烧穿距离”的定义:“烧穿距离”是指A方使用电子干扰设备对B方进行压制性干扰,在接近B方的过程中,干扰失效的距离。

举例来说,当F15的雷达锁定一架F18时,F18为了避免自身被锁定遭受攻击,于是开始对F15实施电子干扰,此时由于电子干扰功率相对较大,F18的目标信息就淹没在杂波中,达到了干扰目的。当F15与F18接近到一定距离时,F15的雷达接收到的目标信号大于干扰杂波信号,干扰失效,这个距离就叫做烧穿距离。

提前说明:本文所讨论的是收发共用天线,干扰机属于载机自带的情况,且所有情况均为理想情况。二次雷达与随队干扰机原理也类似,不在本文所讨论的范围内。
接下来,我们就开始进行烧穿距离的推导。


一、    雷达方程推导 
假设雷达的发射功率\[{​{P}_{t}}\](很多人对这个功率存在误解,这里实际指的是峰值功率,而不是雷达平均功率),发射天线增益为\[{​{G}_{​{}}}\]
则在距离雷达\[R\]处的功率密度为:
                                                               \[S\text{=}\frac{​{​{P}_{t}}{​{G}_{t}}}{4\pi {​{R}^{2}}}\]  (1)
    在B处接收到的功率: 
     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值