电机统一理论中功率不变的坐标变换系统

电机统一理论的基础是坐标变换理论。目前有两种坐标变换系统被普遍采用:

1、磁势不变的变换系统;

2、功率不变的变换系统;

当前,随着电机统一理论的应用范围不但扩大,坐标变换的形式和内容也不断的发展,恒功率变化系统的概念也需要更新和完善。在恒功率变化系统的应用过程中以下问题需要注意和解决:

1、复-实,复-复变量之间的坐标变换如何保证恒功率不变

2、综合矢量与各种变换之间的关系如何

3、采用各种恒功率变换前后,电机的运动方程发生了怎样的变化?如何在新坐标系统下对瞬时电磁转矩进行正确计算?

数学基础:

几个数学概念:

欧式空间:

 定义 设 V 是一个实线性空间,如果对于 V 中任意两个向量 α 和 β 都指定了一个实数与之对应,这个实数记作 <α,β>, 且满足以下条件:
(1)对称性: <α,β>=<β,α>;
(2)齐次性: <kα,β>=k<α,β>;
(3) 加性: <α+β,γ>=<α,γ>+<β,γ>;
(4)非负性: <α,α> >=0, 等号成立的充分必要条件是α = 0.
其中α,β和γ是V中任意向量, k是任意实数, 则称实数<α,β>为α和β的内积, 称定义了内积的实线性空间V为实内积空间或欧几里得空间, 简称为欧氏空间.

向量空间:

向量空间亦称线性空间。它是线性代数的中心内容和基本概念之一。设V是一个非空集合,P是一个域。若:

1.在V中定义了一种运算,称为加法,即对V中任意两个元素α与β都按某一法则对应于V内惟一确定的一个元素α+β,称为α与β的和。

2.在P与V的元素间定义了一种运算,称为纯量乘法(亦称数量乘法),即对V中任意元素α和P中任意元素k,都按某一法则对应V内惟一确定的一个元素kα,称为k与α的积。

3.加法与纯量乘法满足以下条件:

1) α+β=β+α,对任意α,β∈V.

2) α+(β+γ)=(α+β)+γ,对任意α,β,γ∈V.

3) 存在一个元素0∈V,对一切α∈V有α+0=α,元素0称为V的零元.

4) 对任一α∈V,都存在β∈V使α+β=0,β称为α的负元素,记为-α.

5) 对P中单位元1,有1α=α(α∈V).

6) 对任意k,l∈P,α∈V有(kl)α=k(lα).

7) 对任意k,l∈P,α∈V有(k+l)α=kα+lα.

8) 对任意k∈P,α,β∈V有k(α+β)=kα+kβ,

则称V为域P上的一个线性空间,或向量空间。V中元素称为向量,V的零元称为零向量,P称为线性空间的基域.当P是实数域时,V称为实线性空间.当P是复数域时,V称为复线性空间。

总结下来即:向量的加法、数乘,使其满足加法的交换律、结合律、零元、负元;数乘的交换律、单位一;数乘与加法的结合律(两个)共八点要求,从而形成一个线性空间,这个线性空间就是向量空间

一、欧式空间与正交变化

正交变化T是一满足内积不变的变换,即[T(α),T(β)]=(α,β),正交变化可将欧式空间中的任一组标准正交基ε1,ε2,........εn变换为另一组标准正交基T(ε1),T(ε2),......T(εn).

对实线性空间,由于正交变换保持内积不变,而功率恰好是电流、电压矢量的内积,故正交变换保持功率不变,利用正交变换可将实对称矩阵化为对角阵,实现各向量的解耦。故对磁链方程ψ=Li,利用正交变换可将电感阵化为对角阵,从而消除了线圈之间的互感耦合,便于实现解耦控制。

二、酉空间与酉交变换

酉空间:

设V是复数域C上的线性空间,在V上任意两向量x、y按某一确定法则对应于唯一确定是的复数,称为内积,记为(x,y),满足以下性质:
共轭对称性(x,y)= ;
可加性(x+y,z)=(x,z)+(y,z);
齐次性(k x,y)=k(x,y),k为任意复数;
非负性(x,x)≥ 0,当且仅当x=0时有(x,x)= 0.
定义了内积的复线性空间V,叫复内积空间即酉空间(有限维或无限维)。

酉变换δ是一满足内积不变的变换,即[δ(α),δ(β)]=[α,β]。酉变换δ可将酉空间中的任一组标准正交基δ(ε1)、δ(ε2)......δ(εn),由此可见,对复线性空间,由于酉变换保持内积不变,而酉空间的内积恰好对应于瞬时复工率,因此酉变换保持瞬时复功率不变,利用酉变换可化正规矩阵为对角阵,从而实现各向量解耦。

功率不变坐标变换系统的概念、条件和意义

一、功率不变坐标变换系统的概念

为了解决复坐标系统(或复-实坐标变换系统)之间的功率不变问题,首先需要在复坐标系统下提出瞬时功率的概念。为此将酉空间中电流和电压复向量的内积定义为瞬时功率,以表示复坐标系统下的瞬时功率,即:

当瞬时复功率虚部为零时,酉空间中的瞬时复功率成为欧式空间中的功率,即实际系统的功率。这一概念解决了复-实、复-复坐标系统之间变换的功率不变性问题,似的瞬时功率的概念具有普遍意义。

实际系统最初皆是由实变量表示,在采用复坐标系统时必然要经过实-复变换。而在原始的实变量系统中其虚部功率必然为零,变换过程中又保持功率不变,故:

应当强调指出的是:瞬时复功率是瞬时值概念,不同于向量功率后者其变量是用相量表示,仅适用于正弦稳态系统情况。而前者不仅适用正弦稳态情况,也适用非正弦稳态情况。

二、功率不变坐标变换的条件

设变换前的电压方程为u=zi,令变换方程为;变换后的电压方程为。为了保证一般意义上坐标变换前后的功率形式不变,需满足,于是得。通常取,即要求C为酉阵。

三、功率不变坐标变换的意义及应用

 要保持功率不变,变换矩阵必须是酉阵(或正交矩阵),也就是必须采用酉变换(或者是正交变换)。利用酉变换或者正交变换可以实现电感阵的对角化。在这一过程中,如果将组成变换阵的各特征列向量规范化(即化为一组标准正交基),则可保证变换前后功率形式不变。

考虑到异步电机和同步电机的电感阵分别为正规矩阵与对称矩阵的特点,利用酉变换使正规阵对角化的方法,并在过程中对特征列向量规范化以保证功率形式不变。从而获得各种实、复恒功率变换阵如所得abc->fbo坐标系统的变换阵为:

功率不变系统的综合矢量的引入

综合矢量反映的是电机系统中各相变量综合作用于气隙的情况,其在各空间轴(相轴)上的投影即表示该相量(u,i,ψ,F)的瞬时值。综合矢量如下图所示,图中ω表示旋转矢量的速度,f可以试u,i,ψ,F等。则a,b,c三相的瞬时值可以分别为:

式中表示综合矢量的模。

由此可见:综合矢量仅限于研究空间为正弦分布的情况(即空间基波情况),对时间激励却无任何限制。因而适应于研究任意波形激励下电机的暂态以及稳态分析,尤其适合逆变器供电的电机系统分析。

若以a相轴为实轴,则空间复向量可以表示为:

式中,,写成向量形式为:

可认为该综合矢量是由三相系统变量变换成一相系统的变量f,其变换阵为:

由功率不变坐标变换的意义可知:只要对组成变换阵的特征向量规范化(单位化),即可保证变换前后的功率形式不变。由此我们可引入一种新的综合矢量——功率不变系统的综合矢量。

上述综合矢量f规范化后有:

于是

同理可得两相系统的综合矢量为:

各种恒功率变换阵的推导

   根据很功率不变综合矢量,获得各种恒功率变换阵。

功率不变系统的综合矢量为:

显然这个综合矢量与瞬时值对称分量(即120)中的正序分量(即1分量)完全相同。于是有。又120分量的负序分量(即2分量)为:

又定义零序分量为

由此得综合矢量对应的恒功率变换阵为:

,其中,变换阵为:

考虑到dq0轴可以任意旋转,而αβ0为静止坐标系。若取α轴为实轴,其中,

亦即

对等虚实部,且定义

于是有:

其中

 

 

 

 

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值