faster rcnn论文

Faster R-CNN通过引入区域提议网络(RPN)解决了目标检测中提案生成的瓶颈问题。RPN同时预测边界框坐标和得分,与Fast R-CNN共享卷积层以减少计算成本。训练策略包括交替训练、几乎共同训练和完全共同训练。实验表明,Faster R-CNN在VOC数据集上表现优越,且分析了不同超参数设置、提案数量和网络结构对性能的影响。
摘要由CSDN通过智能技术生成

背景:proposals的生成成为目标检测的瓶颈。

作者祭出faster rcnn = rpn + fast rcnn的结构,本文主要介绍rpn网络。

rpn网络同时预测目标的边界proposal坐标 和 proposal的得分,并且在训练时候可以和fast rcnn共享卷积层,减少生成proposal的代价。

本采用交替训练的方法,当然在后面也实现了同时训练rpn和fast rcnn。

介绍:

由于在之前的工作中生成建议框需要很长的时间,rpn使用深度卷积网络计算proposal,在于fast rcnn共享卷积层之后通过独有的卷积层计算区域边界和目标得分。

clipboard

网络结构:

rpn-test

解决多尺度问题:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值