3 损失函数和优化

本文介绍了损失函数在评估分类器性能中的作用,通过实例展示了SVM损失函数的计算,并探讨了L1和L2正则化对权重的影响。同时,解释了为何使用梯度下降优化参数,以及mini batch梯度下降在减少计算量和提升效果上的优势。
摘要由CSDN通过智能技术生成

为了描述之前建立的线性分类器的分类效果,我们引入的损失函数,顾名思义,损失函数越大误差也就越大。

在下图的任务中,将测试图片猫、车和青蛙输入网络,输出了一系列的数值,如下表。

clipboard

很显然我们希望图片对应的分类数值越高越好,例如猫的图片对应cat,但是数值只有3.2,还不如对应的car的数值,所以该线性分类器会将猫这张图片分类为car。

下面引入svm loss函数:

clipboard

其中Sj和Syi分别对应错误分类的值和正确分类的值,猫这张图片的loss为:

max(0,5.1-3.2+1)+max(0,-1.7-3.2+1) = 2.9

同理计算出其他两个图片的loss值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值