为了描述之前建立的线性分类器的分类效果,我们引入的损失函数,顾名思义,损失函数越大误差也就越大。
在下图的任务中,将测试图片猫、车和青蛙输入网络,输出了一系列的数值,如下表。

很显然我们希望图片对应的分类数值越高越好,例如猫的图片对应cat,但是数值只有3.2,还不如对应的car的数值,所以该线性分类器会将猫这张图片分类为car。
下面引入svm loss函数:

其中Sj和Syi分别对应错误分类的值和正确分类的值,猫这张图片的loss为:
max(0,5.1-3.2+1)+max(0,-1.7-3.2+1) = 2.9
同理计算出其他两个图片的loss值。