tensorflow--tf.reduce_sum( ) 函数

reduce_sum( ) 是求和函数,可以通过调整 axis =0,1 来控制求和的维度。

import numpy as np
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

x = tf.constant([[1, 1, 1], [1, 1, 1]])
d0 = tf.reduce_sum(x)
d1 = tf.reduce_sum(x, 0)
d2 = tf.reduce_sum(x, 0, keepdims=True)
d3 = tf.reduce_sum(x, 1)
d4 = tf.reduce_sum(x, 1, keepdims=True)
d5 = tf.reduce_sum(x, [0, 1])

init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    print(sess.run(d0))
    print(sess.run(d1))
    print(sess.run(d2))
    print(sess.run(d3))
    print(sess.run(d4))
    print(sess.run(d5))
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值