045基于卷积神经网络的94种矿石识别

代码下载和视频演示地址:

045基于卷积神经网络的94种矿石识别_哔哩哔哩_bilibili

效果展示图如下:

代码文件展示如下:

运行01数据集文本生成制作.py可以读取图片路径保存再txt文本中,

运行02train.py可以对txt文本中的图片路径读取并训练模型,

运行03pyqt.py可以生成一个可视化的界面,通过点击加载感兴趣的图识别。

​注:

下载本代码环境自行安装(代码含安装环境的r.txt)

如需远程安装环境运行,

或逐行代码注释(小白也能快速掌握理解代码),

或其他需求

都可进行定制

其他代码可了解;

以下含完整代码,包括ui界面,视频演示即为代码内容。')
代码仓库和视频演示地址:'+str("https://space.bilibili.com/1747287365"))
包含:')
001手写汉字识别-单个汉字识别-pyqt可视化交互界面-python代码')
002unet墙体瑕疵检测-python-pytorch')
003水果识别小程序-pyt

### 基于卷积神经网络的岩石分类识别研究 近年来,随着计算机视觉领域的发展,卷积神经网络 (CNN) 已经被广泛应用于各种图像分类任务中[^3]。对于特定领域的应用,如地质学中的岩石分类识别,研究人员也开始探索如何利用 CNN 的强大功能来提高分类精度。 #### 卷积神经网络在岩石分类中的优势 卷积神经网络能够自动提取特征并进行高效的学习过程,在处理复杂的自然场景下的岩石纹理和结构方面表现出显著的优势。通过多层卷积操作捕捉不同尺度上的细节信息,并结合池化层减少参数数量的同时保持重要的空间关系不变性[^1]。 #### 学术文献综述 针对岩石分类的具体应用场景,一些学者已经开展了深入的研究工作: - **基于深度学习框架的岩石类型自动化鉴定方法**:该研究提出了一个端到端的解决方案,采用预训练模型迁移学习的方式快速适应新的样本集,从而实现高准确率的岩矿石种类判别。 - **融合多种模态数据增强泛化能力**:为了克服单一光学图片可能带来的局限性,有研究表明引入其他形式的数据源(例如 X 射线衍射图谱),可以进一步改善最终预测效果。 - **改进传统算法以应对野外环境挑战**:考虑到实际采集过程中不可避免存在的噪声干扰因素,某些优化策略也被提出用于加强系统的鲁棒性和可靠性。 ```python import torch from torchvision import models, transforms from PIL import Image def load_model(): model = models.resnet50(pretrained=True) # 修改最后一层全连接层适配岩石类别数 num_ftrs = model.fc.in_features model.fc = torch.nn.Linear(num_ftrs, number_of_rock_classes) return model transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), ]) image_path = "path_to_your_rock_image.jpg" img = Image.open(image_path).convert('RGB') input_tensor = transform(img).unsqueeze(0) model = load_model() output = model(input_tensor) predicted_class = output.argmax(dim=1).item() print(f"The predicted class is {predicted_class}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值