2025年适合进阶学习的机器学习和AI领域UP主推荐

一、理论与工程结合类

  1. 跟李沐学AI(B站)

    • 亚马逊资深科学家主理,特色:
    • 论文逐行精读(Transformer/BERT等经典论文)
    • 大规模分布式训练实战
    • MXNet/Gluon框架源码级解析
  2. Shusen Wang(B站/YouTube)

    • 算法推导可视化专家:
    • 手推神经网络数学公式
    • PyTorch底层实现解析
    • 推荐系统与图神经网络专题

二、工业级应用方向

  1. Coggle数据科学(B站)

    • 适合有工程经验的技术人员:
    • Kaggle竞赛实战复盘
    • 特征工程优化技巧
    • 生产环境模型部署方案
  2. AI算法工程师的日常(B站)

    • 工业界落地经验分享:
    • 模型压缩与量化技术
    • 多模态应用开发
    • 模型监控与迭代策略

三、前沿技术追踪

  1. AI研习社(B站)

    • 最新论文速递:
    • NeRF/扩散模型等前沿技术解读
    • 每周顶会论文精选
    • 行业技术趋势分析
  2. AI葵老师(B站)

    • 强化学习专题:
    • 多智能体系统实战
    • 复杂决策场景建模
    • 结合游戏引擎的仿真训练

四、系统架构设计

  1. 算法美食屋(B站)

    • 企业级解决方案:
    • 机器学习系统架构设计
    • 特征存储平台建设
    • 实时推理系统优化
  2. AI工程化(YouTube)

    • MLOps专题:
    • 持续训练流水线搭建
    • 模型版本管理策略
    • 自动化监控报警系统

五、专项领域突破

  1. 跟Jeffrey学AI(B站)

    • NLP进阶方向:
    • 大模型微调实战
    • 知识图谱构建
    • 对话系统架构设计
  2. OpenMMLab(官方账号)

    • 计算机视觉全栈:
    • 模型训练技巧
    • 检测/分割任务优化
    • 自定义数据集处理

学习建议:

  1. 技术选型聚焦:建议根据当前业务方向(如CV/NLP/推荐系统)选择2-3个主攻UP主
  2. 实践驱动学习:重点观看包含完整代码仓库和实验数据的教程
  3. 参与社区互动:关注UP主的技术交流群,获取行业内部技术动态
  4. 结合论文阅读:针对重点技术方向配合原始论文进行深度学习

对于有经验的技术人员,建议特别关注模型压缩、分布式训练、在线学习等工程实践方向的内容,这些往往是企业级应用中真正的技术难点。同时可以关注一些海外优质频道(如Andrew Ng的官方频道)的中文字幕搬运账号,保持对基础理论体系的持续更新。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值