一、理论与工程结合类
-
跟李沐学AI(B站)
- 亚马逊资深科学家主理,特色:
- 论文逐行精读(Transformer/BERT等经典论文)
- 大规模分布式训练实战
- MXNet/Gluon框架源码级解析
-
Shusen Wang(B站/YouTube)
- 算法推导可视化专家:
- 手推神经网络数学公式
- PyTorch底层实现解析
- 推荐系统与图神经网络专题
二、工业级应用方向
-
Coggle数据科学(B站)
- 适合有工程经验的技术人员:
- Kaggle竞赛实战复盘
- 特征工程优化技巧
- 生产环境模型部署方案
-
AI算法工程师的日常(B站)
- 工业界落地经验分享:
- 模型压缩与量化技术
- 多模态应用开发
- 模型监控与迭代策略
三、前沿技术追踪
-
AI研习社(B站)
- 最新论文速递:
- NeRF/扩散模型等前沿技术解读
- 每周顶会论文精选
- 行业技术趋势分析
-
AI葵老师(B站)
- 强化学习专题:
- 多智能体系统实战
- 复杂决策场景建模
- 结合游戏引擎的仿真训练
四、系统架构设计
-
算法美食屋(B站)
- 企业级解决方案:
- 机器学习系统架构设计
- 特征存储平台建设
- 实时推理系统优化
-
AI工程化(YouTube)
- MLOps专题:
- 持续训练流水线搭建
- 模型版本管理策略
- 自动化监控报警系统
五、专项领域突破
-
跟Jeffrey学AI(B站)
- NLP进阶方向:
- 大模型微调实战
- 知识图谱构建
- 对话系统架构设计
-
OpenMMLab(官方账号)
- 计算机视觉全栈:
- 模型训练技巧
- 检测/分割任务优化
- 自定义数据集处理
学习建议:
- 技术选型聚焦:建议根据当前业务方向(如CV/NLP/推荐系统)选择2-3个主攻UP主
- 实践驱动学习:重点观看包含完整代码仓库和实验数据的教程
- 参与社区互动:关注UP主的技术交流群,获取行业内部技术动态
- 结合论文阅读:针对重点技术方向配合原始论文进行深度学习
对于有经验的技术人员,建议特别关注模型压缩、分布式训练、在线学习等工程实践方向的内容,这些往往是企业级应用中真正的技术难点。同时可以关注一些海外优质频道(如Andrew Ng的官方频道)的中文字幕搬运账号,保持对基础理论体系的持续更新。