机器人方向学习路线参考

学习路线参考了b站up主:哈萨克斯坦x、CodeSheep、知乎博主:yy硕,感谢各位前辈的分享

机器人方向所需知识分类:软件编程、机器人理论学习、项目实践、其他内容

一、软件编程部分

该部分主要包括python、c++、ros、MATLAB、编程基础四大件、其他内容的学习

1.python

1.1学习思路

先学完基础的课程内容,其他从项目中学习

1.2学习计划及课程

【Python教程】《零基础入门学习Python》最新版(完结撒花🎉)_哔哩哔哩_bilibili

2.c++

2.1学习思路

由于c++课程难度大,在目前比较着急用的情况下,先学习速成课程,对基础语句有大概的印象,配合chatgpt把项目跑起来,之后每天再学习一些c++的课程和项目。

2.2学习计划及课程

快速入门:这可能是史上最快学习C++的课程,期末考前复习冲刺的宝典_哔哩哔哩_bilibili

持续学习:黑马程序员匠心之作|C++教程从0到1入门编程,学习编程不再难_哔哩哔哩_bilibili

3.编程基础四大件

3.1学习思路

不管是学什么语言,不管你想从事什么编程岗位,只要想搞编程这四个理论基础死活都得掌握(up主原话),编程基础四大件包括数据结构和算法、计算机网络、操作系统、设计模式。从机器人实践角度出发,目前对我们学习帮助最大的是数据结构与算法,我个人的学习思路是主要学习数据结构与算法,学完之后配合刷题,等目前项目结束以后根据时间来学习剩下的三个部分。

基础四大件的要点:

(1)数据结构和算法。数据结构:字符串、链表、二叉树、堆、栈、队列、哈希······
算法:查找、排序、动态规划······
(2)计算机网络TCP/IP协议栈:ARP协议、IP协议、ICMP协议、TCP协议、UDP协议、DNS协议、HTTP协议、HTTPS协议
(3)操作系统。进程和线程:原子性、并发、锁······;内存:内存分布、内存调度······
(4)设计模式:单例、工厂、代理、策略、模板方法

3.2学习计划与课程

数据结构与算法书籍:大话数据结构、剑指offer

视频课程:数据结构与算法基础(青岛大学-王卓)_哔哩哔哩_bilibili

刷题:力扣 (LeetCode) 全球极客挚爱的技术成长平台

计算机网络书籍:《TCP/IP详解》
计算机操作系统书籍:《深入理解计算机系统》
设计模式:《大话设计模式》

4.ros机器人操作系统(重点)

4.1学习思路

同样是先学基础内容,然后到项目中具体实践,有不足的内容再进行补全。

4.2学习计划与课程

将要学习的课程:(选择适合的看)【古月居】古月·ROS入门21讲 | 一学就会的ROS机器人入门教程_哔哩哔哩_bilibili(概括性强)

【Autolabor初级教程】ROS机器人入门_哔哩哔哩_bilibili(基础、全面、实践性强)

机器人操作系统 ROS 快速入门教程_哔哩哔哩_bilibili(基础,精简,实践性强)

深蓝学院moveit(私信)

5.其他扩展内容

5.1学习思路

学到什么软件就补什么软件的知识,加上平时的兴趣积累。比如:Linux基础命令、仿真软件VREP、Gazebo、PyBullet、RM各大战队的培训视频、线性代数、理论力学、MATLAB工具箱

5.2学习课程

港科大ENTERPRIZE战队的个人空间-港科大ENTERPRIZE战队个人主页-哔哩哔哩视频 (bilibili.com)

 速学150个Linux常用命令_哔哩哔哩_bilibili

Documentation - MATLAB & Simulink - MathWorks 中国

【官方双语/合集】线性代数的本质 - 系列合集_哔哩哔哩_bilibili

哈尔滨工业大学 理论力学 1080p和4k修复(全集)_哔哩哔哩_bilibili

等等...

二、机器人理论知识部分

1.机器人学知识

位姿表示、正逆运动学、轨迹规划、路径规划

1.1 学习计划与课程

书籍:《机器人学导论》 必看,机器人经典入门书籍

《机器人学、机器视觉与控制——MATLAB算法基础》Peter corke

《现代机器人学》Kevin M.Lynch进阶书籍

视频课:华科机器人学机器人学:建模、控制与视觉——华中科技大学_哔哩哔哩_bilibili

台大机器人学台大机器人学之运动学——林沛群(含课件+书籍)_哔哩哔哩_bilibili

路径规划课程 

2.深度学习

2.1 学习计划与课程

吴恩达深度学习第一、二、五课 入门、启蒙

【中英字幕】吴恩达深度学习课程第一课 — 神经网络与深度学习_哔哩哔哩_bilibili

pytorch教程

强推!不愧是公认的讲的最好的【pytorch全套教程】同济大佬12小时带你从入门到进阶(机器学习/神经网络/人工智能/计算机视觉/Python)_哔哩哔哩_bilibili

深度强化学习 

​​​​​​【莫烦Python】强化学习 Reinforcement Learning_哔哩哔哩_bilibili

三、项目实践

古月居的项目:OriginBot智能机器人开源套件 开发者的第一台车

arduino论坛

DFRobot官网-开源硬件,智能机器人和科创教育产品及服务提供商

四、其他

等待学习补充

### 机器人学习的发展路径 机器人学习涵盖了多个学科和技术领域,包括机器学习、人工智能、控制理论等。随着技术的进步,机器人学习经历了从传统编程向自适应学习系统的转变。 #### 初期阶段:基于规则的传统编程 早期的机器人主要依靠预定义的行为模式来执行特定任务。这些行为由程序员通过编写详细的指令集来规定,适用于结构化环境中重复性的简单操作[^1]。 #### 过渡时期:引入经典优化算法 当面对复杂度更高的场景时,研究人员开始采用经典的最优化算法来进行路径规划和其他决策过程。例如,在静态已知环境中使用的A*算法和Dijkstra算法能够有效地计算出两点之间的最佳路线。 #### 新兴趋势:利用强化学习进行自我训练 近年来,随着计算能力的增长及数据量增加,特别是深度神经网络的成功应用,使得像Q-learning这样的强化学习方法成为可能并得到广泛应用。这类模型允许机器人在未知或变化莫测的情况下自主探索环境并通过试错机制不断改进自己的策略。 #### 当前前沿:深度融合与扩展应用场景 目前的研究正朝着更加智能化的方向前进,比如结合深度卷积神经网(DCNNs),构建深层增强型网络(Deep Q-Network,DQN),进一步提升了处理高维输入的能力,并促进了多智能体协作等方面的应用进展[^2]。 ### 学习资源推荐 对于希望深入理解这一领域的个人来说,可以从以下几个方面入手: - **基础概念掌握** 阅读有关自动控制系统原理、线性代数等相关书籍,建立坚实的数学物理基础。 - **实践平台搭建** 使用MATLAB/Simulink工具箱模拟实验环境,尝试实现简单的移动机器人避障功能;也可以考虑开源硬件Arduino/Raspberry Pi配合传感器完成实物验证项目。 - **高级课程进修** 参加在线教育平台上开设的人工智能专项课程,如Coursera上的《Machine Learning》系列课件,或是edX提供的《Artificial Intelligence MicroMasters Program》,逐步接触最新的研究成果和发展动向。 ```matlab % MATLAB代码片段展示如何初始化一个基本的Q-table用于迷宫导航问题 numStates = ...; % 定义状态空间大小 numActions = ... ; % 行为空间维度 qTable = zeros(numStates,numActions); % 创建全零矩阵作为初始Q表 alpha = 0.1; gamma = 0.9; epsilon = 0.1; % 设置参数值 ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值