Taylor级数定义和常用的Taylor级数展开式

Taylor级数 是一种表达一个函数的无穷级数,它基于该函数在某点的导数信息。通过Taylor级数,我们可以近似计算某个函数在某一点附近的值。

在这里插入图片描述

1. Taylor级数定义

假设函数 f ( x ) f(x) f(x) 在点 a a a 处具有任意阶导数(即 f ′ ( a ) , f ′ ′ ( a ) , f ( n ) ( a ) f'(a), f''(a), f^{(n)}(a) f(a),f′′(a),f(n)(a) 存在)。则该函数在 a a a 附近的Taylor级数展开为:

f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + f ( 3 ) ( a ) 3 ! ( x − a ) 3 + ⋯ = ∑ n = 0 ∞ f ( n ) ( a ) n ! ( x − a ) n f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n f(x)=f(a)+f(a)(xa)+2!f′′(a)(xa)2+3!f(3)(a)(xa)3+=n=0n!f(n)(a)(xa)n

其中:

  • f ( a ) f(a) f(a) 是函数在 a a a 处的值,
  • f ′ ( a ) f'(a) f(a) 是函数在 a a a 处的导数值,
  • f ′ ′ ( a ) f''(a) f′′(a) 是函数在 a a a 处的二阶导数值,依此类推。

2. 推导过程

推导步骤

  1. 函数的定义
    f ( x ) f(x) f(x) 在点 a a a 处具有足够高阶的导数。

  2. 函数的增量
    我们考虑函数 f ( x ) f(x) f(x) 在点 x x x 附近的增量,假设 x = a + h x = a + h x=a+h,其中 h = x − a h = x - a h=xa,则:
    f ( a + h ) = f ( a ) + Δ f = f ( a ) + f ′ ( a ) h + f ′ ′ ( a ) 2 ! h 2 + f ( 3 ) ( a ) 3 ! h 3 + … f(a + h) = f(a) + \Delta f = f(a) + f'(a)h + \frac{f''(a)}{2!}h^2 + \frac{f^{(3)}(a)}{3!}h^3 + \dots f(a+h)=f(a)+Δf=f(a)+f(a)h+2!f′′(a)h2+3!f(3)(a)h3+
    这里 Δ f \Delta f Δf 是函数增量。

  3. 高阶导数的贡献
    如果我们继续对 f ( x ) f(x) f(x) 进行高阶展开,可以得到更高阶的导数对增量的贡献。例如,二阶导数贡献为:
    f ′ ′ ( a ) 2 ! h 2 \frac{f''(a)}{2!} h^2 2!f′′(a)h2
    逐步将高阶导数加进来,得到无限级数。

  4. 级数的形式
    通过重复类似过程(逐项展开每一阶的导数),得到函数 f ( x ) f(x) f(x) x x x 处的Taylor级数展开式:
    f ( x ) = ∑ n = 0 ∞ f ( n ) ( a ) n ! ( x − a ) n f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n f(x)=n=0n!f(n)(a)(xa)n
    其中每一项的系数是函数在 a a a 处的导数值除以阶乘。

3. Taylor级数的收敛性

Taylor级数的收敛性(即该级数是否能够精确地表示函数)取决于函数本身及其在 a a a 处的性质。对于某些函数,Taylor级数在 a a a 附近的收敛半径是有限的,这意味着该级数只能在某个区间内近似函数;对于其他函数,Taylor级数可能在整个定义域内收敛。

例如,指数函数 e x e^x ex 和正弦函数 sin ⁡ ( x ) \sin(x) sin(x) 在所有实数上都有无穷的收敛半径,因此它们的Taylor级数可以在全域内收敛并精确表示函数。

4. 常见的Taylor级数展开式

一些常见函数的Taylor级数展开如下:

  • 指数函数 e x e^x ex a = 0 a = 0 a=0 处的展开
    e x = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ = ∑ n = 0 ∞ x n n ! e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!} ex=1+x+2!x2+3!x3+=n=0n!xn

  • 正弦函数 sin ⁡ ( x ) \sin(x) sin(x) a = 0 a = 0 a=0 处的展开
    sin ⁡ ( x ) = x − x 3 3 ! + x 5 5 ! − ⋯ = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} sin(x)=x3!x3+5!x5=n=0(1)n(2n+1)!x2n+1

  • 余弦函数 cos ⁡ ( x ) \cos(x) cos(x) a = 0 a = 0 a=0 处的展开
    cos ⁡ ( x ) = 1 − x 2 2 ! + x 4 4 ! − ⋯ = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} cos(x)=12!x2+4!x4=n=0(1)n(2n)!x2n


5. 结论

Taylor级数通过对函数的各阶导数进行展开,能够在给定点附近非常准确地逼近该函数。级数的展开能够在函数连续且具有足够高阶导数的情况下应用。对于一般的分析和计算问题,Taylor级数提供了一种强大的工具,用于近似计算复杂的函数值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱代码的小黄人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值