深度解析 “熵”
flyfish
热力学熵
托马斯·纽可门(Thomas Newcomen)
1712年,英国斯塔福德郡的煤矿深处,地下水正以惊人的速度淹没巷道,煤矿面临严重的地下水渗透问题,传统的人力、畜力抽水效率极低,急需一种能持续提供动力的机械。38岁的铁匠托马斯·纽可门(Thomas Newcomen)站在齐腰深的水中,听着抽水机吱呀作响——传统的人力水泵每分钟只能抽几桶水,根本赶不上渗水的速度。这位浸淫机械多年的工匠,脑海中突然闪过一个念头:能否用蒸汽的力量替代人力?
纽可门的灵感来自早期的「萨弗里蒸汽机」,但那台靠高压蒸汽直接抽水的机器动辄爆炸,效率仅有1%。他另辟蹊径,将活塞与汽缸结合,创造出第一台真正实用的蒸汽机:
- 蒸汽推动活塞上升:锅炉产生的蒸汽进入汽缸,顶起活塞;
- 冷水喷入冷凝蒸汽:活塞到位后,冷水让蒸汽瞬间冷凝,汽缸内形成真空;
- 大气压压回活塞做功:外界大气压推动活塞下降,带动抽水连杆。
这台庞然大物虽然笨拙(效率仅2%-3%,一吨煤只能工作几小时),但首次实现了「热能到机械能」的大规模转化。当它在煤矿发出第一声轰鸣时,矿工们惊叹:「这铁家伙比一百个壮劳力还能抽!」
纽可门机的最大问题是能量浪费惊人:
每次向汽缸喷冷水,汽缸壁会被彻底冷却,下次进气时又需要用蒸汽重新加热汽缸,大量热量消耗在 “加热汽缸” 而非推动活塞上。
实测效率仅有2%-3%(即 97% 以上的煤炭热量被浪费),运行时浓烟滚滚、噪音震天,还需要大量煤炭维持运转。
纽可门的蒸汽机是工业革命的「火种」,尽管浓烟滚滚、效率低下,却第一次证明了蒸汽的力量可以替代人力。他用铁匠的双手叩开了动力机械的大门,让工程师们意识到:热能转化存在巨大潜力,只是需要破解「效率之谜」
詹姆斯·瓦特(James Watt)
瓦特在 1764 年修理纽可门机时,敏锐发现了其核心缺陷:汽缸反复冷热交替导致能量浪费。1769 年,他发明了分离冷凝器—— 将冷凝过程移到独立的冷凝器中,汽缸始终保持高温,效率一举提升至 4%-7%(后来进一步优化到 15%)。
纽可门机是 “能用但低效” 的初代产品,而瓦特的改良则是 “从能用走向高效” 的关键一跃。两者的关系就像 “手机雏形” 与 “智能手机”:前者开创了赛道,后者让赛道真正繁荣。
纽可门蒸汽机虽然简陋,但它是人类第一次让 “热能” 大规模转化为 “机械能”,标志着 “蒸汽时代” 的开端。它的存在让工程师和科学家意识到:
蒸汽动力有巨大潜力,但需要解决效率问题;
能量转换中存在 “损耗”,必须研究热量流动的规律(后来催生了热力学)。
没有纽可门机的 “试错”,就没有瓦特的改良,更不会有后来火车、轮船、纺织厂的蒸汽动力革命。它是工业革命的 “火种”,尽管自身不够明亮,却点燃了人类征服能量的漫长征程。
工程师和科学家迫切需要回答:为何热不能完全转化为功?能量损耗的本质是什么?
萨迪·卡诺(Sadi Carnot)
1824年,巴黎的冬天格外寒冷,28岁的萨迪·卡诺(Sadi Carnot)在阁楼里写下《关于火的动力及产生这种动力的机器的思考》。这本文字晦涩、印量稀少的小册子,就像一颗被扔进雪堆的火星,在当时的科学界几乎没有激起波澜。谁也没想到,这个出身贵族、父亲曾是法国革命政府陆军部长的年轻人,正用一支鹅毛笔,为人类理解能量的本质画出一道永不褪色的红线。
卡诺成长的年代,法国正从拿破仑战争的废墟中复苏,工业革命的浪潮虽晚于英国,但蒸汽机已在矿山和纺织厂发出隆隆声响。他见过纽可门机喷出的滚滚蒸汽,也听说过瓦特改良后的高效蒸汽机,但工程师们始终被一个问题困扰:为什么热机效率永远无法突破5%?难道人类永远无法让热量全部转化为功?
卡诺的独特之处在于,他没有像前人那样盯着具体的汽缸或活塞,而是选择了一条“哲学式”的思考路径。他问自己:如果忽略所有现实缺陷(摩擦、散热、材料强度),最完美的热机应该如何工作?自然界是否存在某种绝对的法则,限制了热机的效率?
这种思维方式,就像伽利略在比萨斜塔上抛开空气阻力,想象“完美落体”;又像牛顿在苹果树下假设“无阻力的宇宙”。卡诺构建的,是一个属于热力学的“柏拉图理想国”——在这个纯粹的思维实验里,热机在两个恒温热源(高温锅炉 T h T_h Th 和低温冷凝器 T c T_c Tc)之间运行,没有任何能量损耗,只有最本质的热量流动与功的转化。
四个“完美舞步”:卡诺循环的诗意推演
卡诺想象的热机循环由四个步骤组成,如同一场精密的机械芭蕾,每个动作都精准对应着能量的形态变化:
-
等温膨胀(吸收热量,温柔做功)
热机从高温热源 T h T_h Th 吸收热量 Q h Q_h Qh,蒸汽在恒温下缓慢膨胀,推动活塞做功。这一步就像“温水煮青蛙”式的温柔发力——温度不变,蒸汽的内能全部转化为功,没有多余热量散失。 -
绝热膨胀(不靠加热,惯性冲刺)
断开与高温热源的连接,蒸汽在绝热(无热量交换)状态下继续膨胀。此时蒸汽靠消耗自身内能降温,直到温度降至低温热源 T c T_c Tc。这一步如同滑冰者收起动力,靠惯性滑行,能量在“寂静”中转换。 -
等温压缩(释放热量,冷静回归)
热机向低温热源 T c T_c Tc 释放热量 Q c Q_c Qc,蒸汽在恒温下被压缩。就像把弹簧慢慢压回原位,此时外界对蒸汽做功,热量被“挤”进低温环境。 -
绝热压缩(不靠冷却,逆势而上)
断开与低温热源的连接,蒸汽在绝热状态下被压缩,温度回升至 T h T_h Th,回到初始状态。这一步如同逆风中的攀登,靠外界做功恢复高温,为下一次循环蓄力。
这四个步骤构成一个闭合环路,如同莫比乌斯环般周而复始。卡诺证明,在这个理想循环中,热机效率 η = 有用功 吸收的热量 = 1 − T c T h \eta = \frac{有用功}{吸收的热量} = 1 - \frac{T_c}{T_h} η=吸收的热量有用功=1−ThTc。换句话说,效率只由两个热源的温度决定,温差越大,效率越高,但永远不可能达到100%——因为 T c T_c Tc 不可能为绝对零度,且热量必须从高温流向低温,无法跳过这一步。
卡诺的理论在当时显得太过超前。19世纪20年代,能量守恒定律(热力学第一定律)尚未确立,“热质说”(认为热是一种无质量的流体)仍占主导地位。卡诺在书中沿用了热质说的语言,导致他的核心思想——热量流动的方向性决定了效率极限——被掩盖在过时的理论框架下。
卡诺的科学生涯因时代动荡而短暂。1832年,巴黎爆发霍乱,36岁的卡诺染病去世,临终前他的笔记和研究手稿被全部销毁(防止疾病传播)。直到1878年,他的弟弟整理遗物时,才发现一叠残存的手稿,其中记载着比公开出版内容更深刻的洞见:
- 他意识到“热量从高温到低温的不可逆性”是自然的基本法则;
- 他隐约触及“熵”的概念,写道:“如果有一天,宇宙中的所有物体温度相等,所有运动都将停止。”(这正是后来“热寂说”的雏形)。
卡诺的伟大,在于他用数学而非实验,为现实世界划定了边界。他的理论就像一把标尺,告诉工程师:
- 想提高热机效率?要么提高高温热源温度(比如让蒸汽更烫),要么降低低温热源温度(比如让冷凝器更冷);
- 但无论如何,效率永远无法突破 1 − T c T h 1 - \frac{T_c}{T_h} 1−ThTc,因为你无法阻止热量向低温逃逸,就像你无法让时光倒流。
今天,卡诺循环依然是热力学的核心模型,从汽车发动机到核电站,从空调到恒星演化,所有涉及能量转换的系统都在遵循他当年写下的公式。
鲁道夫·克劳修斯(Rudolf Clausius)
1865年的一个深夜,德国物理学家鲁道夫·克劳修斯(Rudolf Clausius)在苏黎世的实验室里反复演算着卡诺循环的公式。桌上散落着萨迪·卡诺30年前的论文《论火的动力》,泛黄的纸页间,卡诺关于“热量流动方向性”的洞见正与克劳修斯脑海中翻滚的能量守恒定律激烈碰撞。突然,他扔下鹅毛笔,在草稿纸上写下一个新符号 S,并配上公式:
Δ
S
=
Δ
Q
T
\Delta S = \frac{\Delta Q}{T}
ΔS=TΔQ
这个被他命名为“熵”(Entropy)的物理量,不仅终结了热力学长达半个世纪的混乱,更撕开了人类认知宇宙本质的一道裂缝。
1824年,卡诺在热质说框架下提出的理想循环,像一个被施了魔法的谜题:他证明热机效率由温差决定((\eta = 1 - \frac{T_c}{T_h}$),却无法解释为何效率永远无法达到100%。到了1850年,克劳修斯已敏锐意识到:卡诺的“热量流动方向性”与热力学第一定律(能量守恒)之间存在深刻矛盾——如果热是能量的一种形式,为何它不能像机械能那样完全转化?
克劳修斯的突破始于对卡诺理论的“翻译”。他摒弃了过时的热质说,转而用能量守恒重新诠释卡诺循环:
- 热量 Q h Q_h Qh 从高温热源 T h T_h Th 流向低温热源 T c T_c Tc,
- 部分热量转化为功 W = Q h − Q c W = Q_h - Q_c W=Qh−Qc,
- 剩余热量
Q
c
Q_c
Qc 必须释放到低温环境。
此时,卡诺的效率公式不再是抽象的数学游戏,而是能量流动不可逆性的直接体现——热量的单向流动导致能量的品质退化。
但克劳修斯并未止步于此。他追问:如何量化这种不可逆性? 经过五年的数学推演,他发现:在可逆循环中,(\frac{\Delta Q}{T}$ 的积分与路径无关,仅取决于初末状态。这意味着存在一个新的状态函数,能够刻画能量的“不可用程度”。1865年,他将其命名为“熵”(Entropy),源自希腊语“内在转变”(entropia),暗合热量与温度的深层关联。
克劳修斯的熵概念包含三重革命性突破:
-
数学化热力学第二定律
他提出 克劳修斯不等式:
d S ≥ δ Q T dS \geq \frac{\delta Q}{T} dS≥TδQ
对于孤立系统(与外界无能量交换),(\delta Q = 0 ,因此 ,因此 ,因此dS \geq 0$——孤立系统的熵永不减少。这一公式将热力学第二定律从定性描述升华为精确的数学工具,使工程师能定量分析能量损耗。 -
揭示自然的方向性
熵增原理彻底终结了“第二类永动机”的幻想。例如,当热量从高温物体传向低温物体时,高温物体的熵减少 − Δ Q T h \frac{-\Delta Q}{T_h} Th−ΔQ,低温物体的熵增加 Δ Q T c \frac{\Delta Q}{T_c} TcΔQ,总熵 Δ S total = Δ Q ( 1 T c − 1 T h ) > 0 \Delta S_{\text{total}} = \Delta Q \left( \frac{1}{T_c} - \frac{1}{T_h} \right) > 0 ΔStotal=ΔQ(Tc1−Th1)>0。这种不可逆性如同时间箭头,指向能量的均匀分布和系统的无序化。
1923年,德国科学家普朗克来中国讲学,中国物理学家胡刚复教授创造性地将其翻译为“熵”。从工程学的角度看,热力学熵为工程师们指明了提高热机效率的方向;从哲学层面来说,熵增定律揭示了自然过程的不可逆性,打破了人们对世界永恒不变的幻想,让我们认识到万物都在朝着无序的方向发展。
清晨的咖啡馆里,蒸汽从咖啡机喷薄而出,与冷空气相遇后迅速消散。这杯刚煮好的90℃咖啡,正在以每秒释放约0.1℃的速度冷却——这不是简单的物理现象,而是热力学第二定律的具象化呈现。克劳修斯在1865年提出的熵增公式ΔS=ΔQ/T,正在这杯咖啡里悄然运作:热量从高温物体向低温环境的单向流动,标志着时间不可逆的箭头。
像咖啡不可能自发重新沸腾,宇宙中的所有孤立系统都在走向无序——这是物理学对"时间为何只能向前"的终极解答。
微观世界的统计力学熵
虽然热力学熵从宏观层面描述了热现象,但它并没有解释熵的微观本质。直到奥地利物理学家路德维希·玻尔兹曼的出现,这一局面才得以改变。玻尔兹曼认为,宏观物体是由大量微观粒子组成的,这些粒子在不停地做无规则热运动。一个宏观状态可以对应多种微观状态,系统的熵与微观状态数密切相关。他提出了著名的玻尔兹曼公式 S = k ln Ω S = k\ln\Omega S=klnΩ,其中 S S S表示熵, k k k是玻尔兹曼常数, Ω \Omega Ω表示微观状态数。
玻尔兹曼的理论,让我们从微观层面理解了熵的本质。以气体为例,当气体分子均匀分布在容器中时,微观状态数多,熵值大;而当气体分子聚集在容器的一角时,微观状态数少,熵值小。从无序到有序的转变,背后是微观粒子运动的统计规律。然而,玻尔兹曼的理论在当时遭到了诸多质疑和反对,他本人也因长期承受学术压力,最终选择结束自己的生命。但历史证明,他的理论为统计力学的发展奠定了坚实的基础,让我们对世界的认识更加深入。
1872年,玻尔兹曼在阿尔卑斯山度假时灵光乍现。他意识到,宏观世界的熵增现象,本质是微观粒子的统计学结果。当气体分子均匀分布在容器中时,对应的微观状态数Ω达到天文数字(比如10^23次方),而当分子全部聚集在角落时,Ω=1。这个发现将熵的概念从宏观热学拉向微观世界,揭示了"无序"的数学本质:可能性空间的大小。
玻尔兹曼公式S=k lnΩ的革命性在于,它证明了有序只是概率极小的偶然状态。就像你把一副扑克牌洗乱后,几乎不可能恢复出厂顺序——除非你刻意干预。这种统计学视角让我们重新理解生命:DNA的双螺旋结构正是通过信息编码,将分子排列的可能性空间压缩到极小,从而对抗熵增。
美国物理学家约西亚·吉布斯进一步拓展了熵的概念,提出了吉布斯熵公式 S = − k ∑ i p i ln p i S = -k\sum_{i}p_{i}\ln p_{i} S=−k∑ipilnpi,其中 p i p_{i} pi表示系统处于第 i i i个微观状态的概率。吉布斯熵不仅适用于平衡态系统,还能处理非平衡态系统,大大拓宽了熵的应用范围。
数字时代的信息论熵
20世纪,通信技术的飞速发展,催生了信息论的诞生。1948年,美国数学家克劳德·香农发表了《通信的数学理论》,标志着信息论的正式创立。香农在研究如何定量描述信息时,借鉴了物理学中熵的概念,提出了信息熵的概念。香农认为,信息是用来消除不确定性的,一个事件的不确定性越大,它所包含的信息就越多。他将信息熵定义为 H ( X ) = − ∑ i = 1 n p ( x i ) log 2 p ( x i ) H(X)=-\sum_{i = 1}^{n}p(x_{i})\log_2p(x_{i}) H(X)=−∑i=1np(xi)log2p(xi),其中 H ( X ) H(X) H(X)表示信息熵, p ( x i ) p(x_{i}) p(xi)表示事件 x i x_{i} xi发生的概率。
信息熵的提出,让我们对信息有了量化的认识。以掷骰子为例,骰子有六个面,每个面出现的概率为 1 6 \frac{1}{6} 61,通过信息熵公式计算可得,掷一次骰子的信息熵约为2.58比特。这意味着,我们需要2.58比特的信息来确定骰子的结果。香农的信息论,不仅为通信技术的发展提供了理论支持,还深刻影响了计算机科学、人工智能等多个领域。1948年,贝尔实验室的香农在研究电话噪音时,发现了熵的另一种形态。他敏锐地意识到,信息的价值不在于其内容,而在于它消除不确定性的能力。掷骰子的信息熵是log₂6≈2.58比特,因为每个结果的概率均等;而如果骰子被做手脚(比如100%出现6点),信息熵就降为0。这个发现催生了数字时代的基石:从压缩算法到量子计算,信息熵成为衡量系统复杂度的通用货币。
香农的贡献不仅在于数学公式,更在于思维方式的转变。他证明了信息与物质、能量一样,是宇宙的基本要素。就像能量有守恒定律,信息也遵循着自己的法则——这解释了为什么量子计算机能突破经典极限:它利用量子叠加态的"可能性空间",实现了信息熵的指数级压缩。
香农熵推广到量子态的冯诺依曼熵
在量子力学领域,匈牙利裔美国数学家冯·诺依曼将香农熵推广到量子态,提出了冯·诺依曼熵。冯·诺依曼熵的公式为 S = − T r ( ρ ln ρ ) S = -Tr(\rho\ln\rho) S=−Tr(ρlnρ),其中 ρ \rho ρ是量子态的密度矩阵。冯·诺依曼熵在量子信息处理、量子计算等领域发挥着重要作用,帮助我们理解量子态的不确定性和量子信息的传输。在微观世界,秩序与混乱的边界变得模糊。量子熵让我们看到,不确定性本身可以成为资源,这或许解释了在宇宙熵增的大背景下,某些局部系统通过量子效应实现了负熵跃迁。
他们解决的问题
热力学熵描述的是能量的不可用程度,单位是焦耳/开尔文。它解释了为什么永动机不可能存在,却无法回答“为什么宇宙诞生于低熵状态”。
统计力学熵用微观状态数定义,单位是比特。它解释了为什么洗牌后很难恢复原状,却无法解释生命现象——毕竟DNA的双螺旋结构将分子排列的可能性压缩到了极小。
信息熵用概率分布定义,单位是比特。它解释了为什么量子计算机能突破经典极限,却无法解释意识的产生——毕竟人类大脑处理信息的方式远超香农公式的范畴。
量子熵用密度矩阵定义,单位是量子比特。它解释了为什么薛定谔的猫能同时生死,模糊了确定与不确定的边界。
量子熵:薛定谔猫的幽灵与牛顿的无穷小
最神秘的两种“幽灵”——一个是量子世界的叠加态,另一个是微积分里的无穷小量。这两个看似无关的概念,却在人类理解“确定性”的边界上,留下了惊人相似的思想轨迹。
先从量子力学说起。我们都知道薛定谔那只既死又活的猫,但如何用数学语言描述这种诡异状态?答案就在密度矩阵里。这个由冯·诺依曼发明的数学工具,就像一个“量子骰子”,每个元素都记录着系统处于不同状态的概率振幅。当猫处于生死叠加时,密度矩阵的非对角元会像幽灵般闪烁——它们既不是0也不是1,而是某种“中间态的幽灵”。
这里的关键概念是量子熵,它的单位不是比特,而是量子比特(qubit)。如果说香农熵衡量的是经典世界的不确定性,那么量子熵则是在测量叠加态的“混乱程度”。当猫处于纯叠加态时,量子熵为0,系统处于完全确定的不确定中;而当叠加态被观测坍缩后,量子熵突然飙升,就像幽灵突然显形。
这种现象让我想起三百年前的微积分革命。牛顿和莱布尼茨用无穷小量计算曲线斜率时,那些被当作0又非0的“dx”也被攻击为“消失量的幽灵”。但正是这种看似矛盾的工具,让人类第一次能精确描述连续变化,后来人们前扑后继干掉了微积分里的幽灵。如今,量子力学中的叠加态同样挑战着我们对“存在”的理解——一个系统可以同时处于两种状态,就像无穷小量同时属于0和非0的世界。
定律
热力学第二定律(熵增定律)
“时间箭头"的底层代码。想象一个醉汉打翻墨水瓶,墨水永远向四周扩散,绝无可能自动缩回瓶中。1865年克劳修斯提出这个宇宙级"懒汉法则”:孤立系统的熵值只会增加或保持不变。它解释了为什么咖啡里的奶精会自动扩散,却不会自己聚集成漩涡——秩序需要能量维持,而混乱是宇宙的默认状态。(物理学)
熵增定律。这个定律说的是,孤立系统的熵只会增加或保持不变,绝不会自发减少。简单说,宇宙就像一杯正在融化的冰块,最终会趋向均匀、无序的“热平衡”状态。
热力学第二定律的终极推论宇宙热寂正是熵增定律在宇宙尺度的终极推演。19世纪物理学家克劳修斯提出,宇宙作为一个孤立系统,所有能量会逐渐从可用状态转化为不可用状态。最终,恒星熄灭、黑洞蒸发、粒子衰变,整个宇宙陷入温度均匀、毫无温差的“死寂”——没有能量流动,没有信息传递,连时间的箭头都将消失。
争议与补充:
经典图景:传统热寂说基于牛顿宇宙观,假设宇宙有限且静态。但现代宇宙学发现宇宙在膨胀,可能延缓热寂进程。
量子修正:霍金辐射表明黑洞会缓慢蒸发,但即使如此,所有物质最终仍会衰变为光子和轻子,走向另一种“量子热寂”。
循环模型:某些理论(如暴胀宇宙)认为宇宙可能周期性重生,但目前缺乏实证支持。
定律归属:热力学第二定律的宇宙学推论,属于物理学范畴。
核心矛盾:宇宙的结局不是爆炸,而是叹息。当最后一丝热量散尽,连虚无本身都将陷入永恒的寂静。宇宙是否真的是“孤立系统”?暗能量、量子引力等未知因素可能改写结局,都是不确定的。
热力学第三定律
绝对零度的"幽灵边界"。1906年能斯特发现,当温度趋近于绝对零度(-273.15℃)时,系统的熵值趋于一个常数。这就像宇宙设置的作弊码:你可以无限接近绝对零度,但永远无法真正抵达,因为那时所有粒子都会陷入完美秩序的"量子睡眠",而量子力学不允许绝对静止存在。(物理学)
香农熵定律
信息的"混乱称量仪"。1948年香农在贝尔实验室思考:如何量化信息中的不确定性?他借鉴热力学熵的数学形式,提出H = -Σp_i log₂p_i的公式。这就像给每个可能事件分配一个"意外值":抛硬币的熵是1比特(正反概率相等),而"太阳明天从东边升起"的熵几乎为零。它奠定了现代通信编码的基础,证明数据压缩的极限由信息本身的无序程度决定。(信息论)
想象你走进一家赌场,庄家让你猜一个六位数的密码:
场景1:弱密码
所有玩家都用「123456」下注。此时:
- 你只需押一次就能赢钱(概率100%)
- 赌场的「香农熵」为0比特(完全确定)
场景2:强密码
每个玩家的密码都是随机生成的六位数。此时:
- 你需要尝试10⁶次才能确保赢钱(概率均等)
- 赌场的「香农熵」为20比特(最大不确定)
数学真相:
弱密码系统的香农熵公式为:
H
=
−
∑
p
i
log
2
p
i
=
−
(
1
⋅
log
2
1
+
0
⋅
log
2
0
)
=
0
bit
H = -\sum p_i \log_2 p_i = -\left(1 \cdot \log_2 1 + 0 \cdot \log_2 0\right) = 0\ \text{bit}
H=−∑pilog2pi=−(1⋅log21+0⋅log20)=0 bit
强密码系统的香农熵公式为:
H
=
−
∑
1
1
0
6
log
2
1
1
0
6
=
20
bit
H = -\sum \frac{1}{10^6} \log_2 \frac{1}{10^6} = 20\ \text{bit}
H=−∑1061log21061=20 bit
香农熵衡量的不是单个密码的「惊喜值」,而是整个系统的「可能性空间」。弱密码系统的问题不在于密码本身的复杂度,而在于它把所有可能性坍缩到了一个点——就像把整个赌场的骰子都灌了铅,结果只能是「123456」。
数据压缩定律(香农第一定理)
信息的"折叠艺术"。基于香农熵的推论:任何数据都可以压缩到其香农熵值以下,但无法无限压缩。这就像把行李箱里的衣物卷成圆柱体,虽然节省空间,但不可能把大象塞进火柴盒。我们日常使用的JPEG图片、MP3音乐,都是工程师在熵值边界上的精准舞蹈。(信息论)