置顶 | 2019学习单/读书单(dream a little dream)

持续更新,年底自查

技术储备类

《分布式处理框架Hadoop入门》(2019/03/06 已学完)

【简要笔记】
HDFS:分余展(分布式,冗余数据,可扩展)的大硬盘,分为name node和data node;
YARN:任务调度模块,分为resource manager,和nodemanager;
MapReduce:Split -> Map -> Shuffle -> Reduce,缺点中间数据要写入HDFS,IO慢。
Hadoop ⇒ Storm ⇒ Spark ⇒ Flink

《JAVA高并发编程》(2019/03/30 已学完)

【简要笔记】
多线程间的协调:synchronized(可见性、原子性),volatile(仅可见性),wait(释放锁) / notify(不释放锁),atomic包(简单类型的原子操作)
可重入锁:ReentrantLock(更灵活)。wait永远和while而不是if一起使用,用notifyAll代替notify,用condition控制唤醒部分线程,thread local变量。
容器:非同步容器(List),同步容器(Vector),高并发容器(Concurrent Queue)。
各种高并发容器和线程池。

《正则表达式》(2019/04/15 已学完)
《机器学习入门:从KNN-神经网络-深度学习》(2019/04/28 已学完)

【简要笔记】
简介:分类算法、回归算法。有监督学习和无监督学习。Anaconda集成环境。
KNN算法:特征向量维度,K是所选的邻居数。可以使用类库中的函数,也可以自定义距离函数,自行实现。
神经网络算法:(以后向传播神经网络为例:Back Propagation)分为一个输入层(神经元数量与特征向量维度相同),多个隐藏层,一个输出层(如果是分类算法,神经元数量与集合数量相同)。每一层的神经元与相邻层的所有神经元之间都有边相连,每个神经元的输入为:(上层所有神经元值与边的权重乘积求和+本神经元的偏执常量)x激励函数。先将输入标准化到区间[0,1],随机给出每条边的初始权重在取间[-1,1]内和偏置值。然后逐层向下计算出结果。神经网络的训练过程是:给出初始权重和偏执,然后通过训练集,自动的调整每条边权重和每个神经元偏置的过程。正向过程全部算完后,根据误差值(通过loss function,即误差函数或损失函数)和给定的学习率再按照给定算法反向计算一遍可以得出每条边的调整后的权重,和每个节点的调整后的偏置。每一组数据可以多次使用直至输出达到可以接受的氛围,经过大量数据的正向计算和反向调整后,即可得到训练好的权重值和偏置值,即训练好的神经网络。(相邻两层神经元之间的权重可以视为一个矩阵,矩阵的长度和宽度分别是上层神经元和下层神经元的数量,由此整个神经网络的计算可以视为若干个矩阵的乘法。)
这里补充一个反向传播算法(Backpropogation)的原理介绍
卷积神经网络算法:上面之前讲的是全连接神经网络,当节点多层数多的时候运算效率非常慢,所以才有了卷积算法,多了卷积层和池化层。

《C#入门经典教程》(2019/09/20 已学完)

【简要笔记】
第1章-入门知识:C#是什么;.NET Framework是什么;VS2015安装教程;VS2015常用菜单和功能简介;第一个C#程序。
第2章-基础语法:基本数据类型;运算符;变量;常量;变量命名规则;if else;switch case;for循环;while循环;do while循环;break;continue;goto。
第3章-类和对象:面向对象简介;类的定义;访问修饰符、修饰符;方法的定义;get和set;调用类成员;构造函数;析构函数;方法重载;方法的参数;lambda表达式;递归;嵌套类;部分类;Console类;Math类;Random类;DateTime类。
第4章-字符串:字符串及常用方法;获取字符串长度;查找字符串中的字符;字符串替换;字符串截取;字符串插入;数据类型转换;隐式类型转换;强制类型转换;Parse方法;Convert方法;装箱和拆箱;正则表达式。
第5章-数组:数组简介;一维数组;多维数组;foreach;Split;冒泡排序;枚举类型;结构体类型。
第6章-继承:继承;Object类简介;Equals方法;GetHashCode方法;GetType方法;ToString方法;VS2015类图的使用;base;virtual;abstract;sealed;继承关系中构造器之间的关系;多态。
第7章-接口:定义接口;接口的实现;接口中多态的实现。
第8章-集合:集合简介;ArrayList;Queue;Stack;Hashtable;SortedList。
第9章-泛型:泛型简介;可空类型;泛型方法;泛型类;泛型集合;IComparable、IComparer。
第10章-文件操作:Driveinfo;Directoryinfo;Directory;FileInfo;File;Path;流简介;StreamReader;StreamWriter;FileStream;BinaryReader;BinaryWriter。
第11章-委托和事件:委托;命名方法委托;多播委托;匿名委托;事件。
第12章- WinForm:创建Windows窗体应用程序;窗体属性;窗体事件;窗体方法;McssageBox;控件简介;Label和LinkLabel;TextBox;Button;RadioButton;CheckBox;CheckedListBox;ListBox;ComboBox;PictureBox;Timer;DateTimePicker;MonthCalendar;ContextMenuStrip;MenuStrip;StatusStrip;ToolStrip;MDI窗体;ColorDialog;FontDialog;OpenFileDialog和SaveFileDialog;RichTextBox。
第13章-异常与调试:Exception;try catch finally;自定义异常;Debug和Trace;程序调试。
第14章-进程与线程:Process;Thread;ThreadStart;ParameterizedThreadStart;Priority;lock;Monitor;Mutex。
第15章-ADO.NET数据库操作:ADO.NET;Connection;Command;DataReader;DataSet和DataTable;DataRow和DataColumn;DataSet;ComboBox;DataGridView;DataGridView应用案例。

《系统性学习Python基础知识》(在读)
《深度学习与人工智能框架TensorFlow入门》
《流式计算框架Storm入门》
《基于内存计算的大数据并行计算框架Spark入门》

生活教育类

《窗边的小豆豆》(2019/05/11 已读完)
《特殊需求孩子的正面管教》(2019/08/07 已读完)

【简要笔记】
区别对待:无辜行为和蓄意行为
从权力争夺中撤出,盖上自己的“盖子”,然后再解决问题

《AlsoLife渔计划系列课程》(2019/10/09 必修部分已学完)

【简要笔记】
贾美香课程部分(必修,5学时:2019/05/13 已学完)
娄潇芳课程部分(选修,4学时:2019/05/27 已学完):强化物扩充(匹配法:新强化物在已有强化物之后或同时出现;介绍法:忌提问);强化物分类(按天然属性分为一级强化物和次级强化物;按物理属性分为食物、感官、实物、活动、社会;按与目标行为的关系分为自然强化物和设计强化物);不以生活必需品作为设计强化物;多用正强化(提供希望的东西)少用设计的负强化(移除厌恶刺激)。
郑甜甜课程部分(必修,23学时:2019/08/16 已学完):实证有效的干预方法(早期密集行为干预、关键反应能力训练、行事历、社交故事、自我管理),回合教学,区别强化(全时距/瞬时强化不相容性为/替代行为/其他行为),代币系统(先备数的概念、集满兑换、按时兑换、多级代币),问题行为,教学。
张俊杰课程部分(选修,11学时:2019/09/27 已学完):要求、命名、听者指令、独立游戏、互动式语言、感知觉、语言丰富性。
林凡裕独立课程部分(选修,1学时:2019/10/09 已学完):天生乐观。

《少有人走的路》(2019/11/22已读完)

《BCBA张苗苗微课全集》(中止)
《全脑教养法》(暂停)
《运动塑造孩子的大脑》

财经金融类

《巴菲特的护城河》(2019/03/27 已读完)

【简要笔记】
行业比管理团队重要,正如赛马比骑师重要,企业更换行业比更换管理团队困难得多。
护城河:无形资产、转换成本、网络效应、成本优势、规模优势。

《高毅投资冯柳文章全集》
《冯柳投资思想》

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皓月如我

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值