图神经网络与分子表征:1. 分子图和图神经网络基础

CSDN的朋友们大家好,好久没写系列文章了。
近期读了很多图神经网络(GNN)和分子表征(molecular representation)的论文,正好最近不是很忙,所以我决定把自己的学习过程记录下来,与大家共勉。
这个系列总体上将围绕着 GNN for molecular representation 展开,我们从分子图和GNN基础出发。
本文主要参照以下两篇精美的科普文章:

  1. A Gentle Introduction to Graph Neural Networks
  2. Understanding Convolutions on Graphs

这两篇文章很出名,很大程度可能因为李沐老师曾出视频讲解过其中第一篇,也有很多同学写了相似的笔记,因此我这里就浅浅记录一下我个人的一些takeaways

分子图

图是具有一定映射关系的点集和边集的集合。
图中每个点和边都有其特定的性质(embedding),整张图也有一个全局的性质(global)。
这种数据结构可能跟传统深度学习的研究对象不一样,例如,CV中是将一张图看做很多的pixel,每个pixel有三元色混合而成。我们此处可将一张图分成点集、边集和全局三块,其实每块儿都可以是相对独立的。看点集时,就可以将每个点看作一个pixel,每个点有很多embedding一样。其他的,边集和全局也是类似的。
在这里插入图片描述
图可以表征很多现实世界的物体,例如,图片和自然语言可以由图结构表示,人与人之间的关系也可以由一条条边链接。
当然,最重要的是,分子可以很好的由图的形式表示。分子中的每个原子可被看做图上的节点。分子内成键可以看作连接不同节点的边。
如果我们进一步把每个键近似为一致的,例如,邻接矩阵中对应位置原子成键记为1,不成键记为0。我们就得到了休克尔分子轨道理论中常用的邻接矩阵。该矩阵的特征值与分子稳定性等密切相关,扬州大学的汪洋教授曾基于此发展出了XSI和CSI理论。(好几篇顶刊)
分子、邻接矩阵、分子图示意如下:
在这里插入图片描述

图神经网络

OK,请大家暂时忘掉分子图,我们拿到分子后将其转换成了图,后面怎么做神经网络就暂时与分子儿子无关了
OK,请大家再看一下上一节提到的图的三个维度:点,边和全局
**在这里插入图片描述**
目前为止,这只是一张静态的图。我们暂且将神经网络当成一个黑箱,如果不考虑三个维度相互之间的信息交互的话,我们可以给每一个维度写一个黑箱神经网络。原图上的各个embedding在经过黑箱后进行了迭代,形成了新的embedding。我们称这样的现象为update,这样的模块可以是多个,这样的话,图中各个元素的embedding会经过多次的update,如下:
在这里插入图片描述
我们现在聚焦到点集上某点的一次update。我们希望该点能够感知到周围点的存在,即,感受到周围的环境。在图神经网络里对应的专业术语是消息传递message passing,还有一个术语是,信息聚合aggregate。如下:
在这里插入图片描述
多层的消息传递如下:
在这里插入图片描述
可以看到,初始图中的局域的性质在经过多次message passing后可以影响到远处的节点,这样的现象又叫做图上的卷积操作。详情请看:Understanding Convolutions on Graphs
embedding updatemessage passing是图神经网络中的两大基本概念。二者本质上是在进行信息的聚合和迭代,在经过多个block后,输入的图会变成一张信息满满的图,此时,我们在基于此对目标性质进行预测。这一过程叫做图的pooling.
如果任务是预测点的性质,比如,预测分子中每个原子的电荷量。有以下两个思路:1. 每个点对应的embedding feature是多维的,去预测一个标量,可以套用简单的回归模型。2. 边集和全局的embedding feature可以通过适当的方式助力点性质的预测。如下图所示:
在这里插入图片描述
同样的,对边的性质做预测时,也可以将点集注入到边集的性质集合中:
在这里插入图片描述
当然,我们用的最多的还是对整个图的性质做预测。例如,预测某分子的能量。这样,我们可以将点和边的性质汇总到全局(下图仅为边到全局):
在这里插入图片描述
注意到,点集、边集和全局之间的信息交互并非只在预测阶段使用。在信息聚合阶段也经常看到。例如,下图中的,node 和 edge 之间多次交互,向浪一样前进,因此叫做weave layer。
在这里插入图片描述

综上,我们得到了GNN工作的完整链条:
在这里插入图片描述
输入的图在经过多次的信息聚合和迭代后,形成了一张新的图,基于这张图,我们对目标性质作预测。

### 回答1: 《图神经网络基础前沿应用》是一本关于图神经网络基础知识最新进展的书籍,介绍了图神经网络的基本概念理论,并探讨了其在各个领域的实际应用。 图神经网络是一种专门用来处理数据的深度学习模型。传统的深度学习模型主要针对向量矩阵数据不同,图神经网络可以有效地处理更复杂的结构数据,例如社交网络、蛋白质相互作用网络等。 本书首先介绍了图神经网络的基本知识,包括结构的表示方法、节点边的特征表示以及基本的图神经网络模型,如卷积神经网络注意力网络等。然后,书中详细介绍了图神经网络基础前沿,如图神经网络的理论基础表示学习方法。这些内容能够帮助读者理解掌握图神经网络的基本原理算法。 此外,本书还探讨了图神经网络在多个领域的实际应用,包括社交网络分析、蛋白质相互作用预测、药物发现、推荐系统等。这些应用案例将帮助读者了解图神经网络在实际问题中的应用场景效果。 总之,《图神经网络基础前沿应用》是一本介绍图神经网络基础知识最新进展的重要参考书籍,对于对图神经网络感兴趣的学者、工程师研究者来说,是一本不可或缺的学习资料。 ### 回答2: 《图神经网络基础前沿应用pdf》是一本关于图神经网络基础知识前沿应用的电子书。该书通过系统地介绍了图神经网络的基本概念、原理算法,同时还关注了目前图神经网络的最新研究进展应用场景。 首先,该书从基础开始介绍了图神经网络的概念基本理论,包括的表示方法、节点嵌入、嵌入等内容。通过对这些基础知识的学习,读者可以对图神经网络的基本原理有一个清晰的理解。 其次,该书还深入探讨了图神经网络在各个领域的应用。例如,在社交网络分析中,图神经网络可以用于社区发现、节点分类链接预测等任务;在化学分子分析中,可以用于分子表示、药物发现反应预测等任务。通过这些实际的应用案例,读者可以更好地了解图神经网络的实际应用价值。 此外,该书还着重介绍了图神经网络的前沿研究方向。例如,介绍了基于图神经网络生成模型、对齐增强等研究方向。这些前沿的研究内容可以帮助读者了解图神经网络的进一步发展趋势,并为读者提供进一步深入研究的方向。 总体而言,这本《图神经网络基础前沿应用pdf》是一本非常有价值的书籍,它系统地介绍了图神经网络基础知识前沿应用,并给出了具体的应用案例研究方向。对于对图神经网络感兴趣的读者来说,这本书是一本不可错过的参考资料。 ### 回答3: 《图神经网络基础前沿应用pdf》是一本关于图神经网络基础知识最新研究进展的电子书。图神经网络是一种用于处理数据的机器学习模型,它能够捕捉数据中的节点边之间的关系,广泛应用于社交网络分析、推荐系统、化学分子结构预测等领域。 这本电子书首先介绍了图神经网络基础概念,包括的表示方法、节点边的特征表示以及图神经网络的基本结构。然后,它介绍了当前图神经网络领域的前沿研究,包括卷积网络、注意力网络、生成模型等。这些模型在提高数据的表征能力、处理大规模数据方面都取得了重要进展。 此外,这本电子书还详细介绍了图神经网络在不同应用领域的应用案例。例如,在社交网络分析中,图神经网络可用于社区发现、社交关系预测等任务。在推荐系统中,它能够利用用户行为来实现个性化推荐。在化学领域,图神经网络能够预测分子间的相互作用力,有助于新药物的研发。 总的来说,《图神经网络基础前沿应用pdf》是一本权威且实用的电子书,对于想深入了解图神经网络的研究者从业者来说,是一本不可多得的参考资料。它综合了基础知识前沿研究,同时还提供了丰富的应用案例,有助于读者全面理解应用图神经网络
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值