CSDN的朋友们大家好,好久没写系列文章了。
近期读了很多图神经网络(GNN)和分子表征(molecular representation)的论文,正好最近不是很忙,所以我决定把自己的学习过程记录下来,与大家共勉。
这个系列总体上将围绕着 GNN for molecular representation 展开,我们从分子图和GNN基础出发。
本文主要参照以下两篇精美的科普文章:
这两篇文章很出名,很大程度可能因为李沐老师曾出视频讲解过其中第一篇,也有很多同学写了相似的笔记,因此我这里就浅浅记录一下我个人的一些takeaways
分子图
图是具有一定映射关系的点集和边集的集合。
图中每个点和边都有其特定的性质(embedding),整张图也有一个全局的性质(global)。
这种数据结构可能跟传统深度学习的研究对象不一样,例如,CV中是将一张图看做很多的pixel,每个pixel有三元色混合而成。我们此处可将一张图分成点集、边集和全局三块,其实每块儿都可以是相对独立的。看点集时,就可以将每个点看作一个pixel,每个点有很多embedding一样。其他的,边集和全局也是类似的。
图可以表征很多现实世界的物体,例如,图片和自然语言可以由图结构表示,人与人之间的关系也可以由一条条边链接。
当然,最重要的是,分子可以很好的由图的形式表示。分子中的每个原子可被看做图上的节点。分子内成键可以看作连接不同节点的边。
如果我们进一步把每个键近似为一致的,例如,邻接矩阵中对应位置原子成键记为1,不成键记为0。我们就得到了休克尔分子轨道理论中常用的邻接矩阵。该矩阵的特征值与分子稳定性等密切相关,扬州大学的汪洋教授曾基于此发展出了XSI和CSI理论。(好几篇顶刊)
分子、邻接矩阵、分子图示意如下:
图神经网络
OK,请大家暂时忘掉分子图,我们拿到分子后将其转换成了图,后面怎么做神经网络就暂时与分子儿子无关了
OK,请大家再看一下上一节提到的图的三个维度:点,边和全局
目前为止,这只是一张静态的图。我们暂且将神经网络当成一个黑箱,如果不考虑三个维度相互之间的信息交互的话,我们可以给每一个维度写一个黑箱神经网络。原图上的各个embedding在经过黑箱后进行了迭代,形成了新的embedding。我们称这样的现象为update,这样的模块可以是多个,这样的话,图中各个元素的embedding会经过多次的update,如下:
我们现在聚焦到点集上某点的一次update。我们希望该点能够感知到周围点的存在,即,感受到周围的环境。在图神经网络里对应的专业术语是消息传递,message passing,还有一个术语是,信息聚合,aggregate。如下:
多层的消息传递如下:
可以看到,初始图中的局域的性质在经过多次message passing后可以影响到远处的节点,这样的现象又叫做图上的卷积操作。详情请看:Understanding Convolutions on Graphs
embedding update和message passing是图神经网络中的两大基本概念。二者本质上是在进行信息的聚合和迭代,在经过多个block后,输入的图会变成一张信息满满的图,此时,我们在基于此对目标性质进行预测。这一过程叫做图的pooling.
如果任务是预测点的性质,比如,预测分子中每个原子的电荷量。有以下两个思路:1. 每个点对应的embedding feature是多维的,去预测一个标量,可以套用简单的回归模型。2. 边集和全局的embedding feature可以通过适当的方式助力点性质的预测。如下图所示:
同样的,对边的性质做预测时,也可以将点集注入到边集的性质集合中:
当然,我们用的最多的还是对整个图的性质做预测。例如,预测某分子的能量。这样,我们可以将点和边的性质汇总到全局(下图仅为边到全局):
注意到,点集、边集和全局之间的信息交互并非只在预测阶段使用。在信息聚合阶段也经常看到。例如,下图中的,node 和 edge 之间多次交互,向浪一样前进,因此叫做weave layer。
综上,我们得到了GNN工作的完整链条:
输入的图在经过多次的信息聚合和迭代后,形成了一张新的图,基于这张图,我们对目标性质作预测。